SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1.0
  • '경량 방수토시 팔토시 작업 위생 안전 경량방수토시(블랙계열) 바움하우스'
  • '사러왕 운전 팔토시 레이스 여성 쉬폰 골프토시 워머 암 핸드 롱장갑 4 레이스 여성팔토시 살구색 언벤샵'
  • '여성운전 팔토시 화이트 태양금'
2.0
  • '[갤러리아] 닥스 DCGV3F287 [남녀공용] 베이지 캐시미어 니트 장갑(타임월드) 한화갤러리아(주)'
  • '[갤러리아] 루이까또즈 방울방울 니트워머 GGILW30005 GGILW30005 베이지 한화갤러리아(주)'
  • '(신세계김해점)질스튜어트 여성 가죽장갑 GBS740X 블랙(01) 신세계백화점'
0.0
  • '남성 가죽 콤비장갑 GPD293H/닥스(장갑) 블랙 롯데쇼핑(주)'
  • '(10%+10%쿠폰) 시즌오프 잡화 / 장갑 목도리 스타킹 양말 방한용품 1_15.윈터 마스크캡_1+1 스킨라이즈'
  • '[갤러리아] [닥스] 남성 가죽 장갑 (D) GPS332H(타임월드) 진브라운91 한화갤러리아(주)'

Evaluation

Metrics

Label Metric
all 0.8877

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_ac12")
# Run inference
preds = model("남성 가죽장갑 GPS742X 블랙 롯데백화점1관")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 10.5733 24
Label Training Sample Count
0.0 50
1.0 50
2.0 50

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (20, 20)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0417 1 0.4357 -
2.0833 50 0.1092 -
4.1667 100 0.006 -
6.25 150 0.0002 -
8.3333 200 0.0002 -
10.4167 250 0.0001 -
12.5 300 0.0001 -
14.5833 350 0.0001 -
16.6667 400 0.0001 -
18.75 450 0.0001 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.46.1
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.20.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
1,147
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mini1013/master_cate_ac12

Base model

klue/roberta-base
Finetuned
(92)
this model

Evaluation results