SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
0.0
  • '[한국표준금거래소] 999.9‰순금 골드바 11.25g 쇼핑백X (주)한국표준거래소'
  • '한국금거래소 순금 꽃다발 골드바 0.2g 기본 종이 케이스 한국금거래소디지털에셋'
  • '한국금거래소 순금 비상금 통장 골드바 1g 주식회사 한국금거래소디지털에셋'
1.0
  • '[한국금거래소]한국금거래소 순금 복주머니 3.75g 롯데아이몰'
  • '[한국금거래소] 어락도 금수저 카드 3.75g 주식회사 한국금거래소디지털에셋'
  • '순금거북이 37.5g 종로골드'
2.0
  • '[한국금거래소] 실버바 100g 은테크 은투자 은시세 생일 기념일 축하 선물 주식회사 한국금거래소디지털에셋'
  • '[100g 실버바] 한국금거래소 99.99% 투자용 은괴 주식회사 골드나라'
  • '[삼성금거래소]Silver Bar(실버바)100g AKmall'

Evaluation

Metrics

Label Metric
all 0.9977

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_ac5")
# Run inference
preds = model("순금뱃지 1.875g 기업 회사 은행 병원 대학교 금뱃지 2.금형추가 투자골드")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 7.7583 17
Label Training Sample Count
0.0 50
1.0 50
2.0 20

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (20, 20)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0526 1 0.4971 -
2.6316 50 0.0373 -
5.2632 100 0.0001 -
7.8947 150 0.0 -
10.5263 200 0.0 -
13.1579 250 0.0 -
15.7895 300 0.0 -
18.4211 350 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.46.1
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.20.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
1,007
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mini1013/master_cate_ac5

Base model

klue/roberta-base
Finetuned
(92)
this model

Evaluation results