SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
0.0
  • '카시오 DW5600 시계 호환 16mm 러버 워치 밴드 실리콘 스트랩 우레탄 시계줄 옐로우 블랙 A_16mm 로움'
  • '갤럭시핏2 스트랩 실리콘 밴드 민트 보미헤안랩소디'
  • '로이드 어썸픽 소형 메쉬밴드 (2종 택 1) LL2B19611X LL2B19611XMG 로즈골드 세컨드플랜'
3.0
  • 'BOBO BIRD 네이비 블루 커플 손목 시계 연인 나무 쿼츠 맞춤형 각인 최고 럭셔리 브랜드 여성용 2.Paper Box 2 Woman 아더월드'
  • '캐주얼남녀손목시계 남자시계 폭발적인 벨트 테리어 시계 유럽 및 미국 시계선물 여자시계 Grey 리마113'
  • '남녀 커플 시계 SCRRJU 스테인레스 스틸 밴드 방수 연인 Se 패션 캐주얼 손목 선물 09 9 홀릭스'
4.0
  • '프레드릭콘스탄트 FC-330MC4P6 클래식 문페이즈 주식회사 에스에스지닷컴'
  • '[다양한선물]순토 코어 올블랙 레귤러블랙 코어블랙레드 순토5 WHR 모음 시리즈 선택01.SS014279010 순토코어올블랙 스타샵'
  • '헬스공부타이머 집중공부타이머 요리 낮잠 여가 시간관리 알람 큐브 SW9EF763 15-60분 화이트 현대몰'
2.0
  • 'SUNOEL 3기압 5기압 방수 어린이 초등학생 전자 손목시계 모음 SUNOEL'
  • '손목시계쇼핑몰 아동용손목시계(16-5A) 손목시계대량 기프트한국'
  • '어린이 손목시계 초등학생 시계 키즈 전자시계 유아 스마트워치 남아 여아 제이에이취'
1.0
  • '제작 빈 핀 버튼 메이커 부품 기계 용품 세트 25mm 32mm 37mm 44mm 50mm 56mm 58mm 50 개 [1]50sets_@#@[7]58mm 캐롤스하우스'
  • '무소음 무브먼트 시계 부품 모터 바늘 공예 DIY 선택D시계판_거북이 제이릴'
  • '시계공구 기타 야마하 YZF R125 R 125 YZFR125 20082013 바이크 오토바이 핸드가드 실드 핸드 가드 보호대 앞유리 07 Green 유비즈엘'

Evaluation

Metrics

Label Metric
all 0.5794

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_ac6")
# Run inference
preds = model("세이코 SBTR SBTR011 전용 힐링쉴드 시계보호필름 기스방지 유리보호필름 31평면 스타샵")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 3 10.9107 22
Label Training Sample Count
0.0 50
1.0 50
2.0 24
3.0 50
4.0 50

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (20, 20)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0286 1 0.3696 -
1.4286 50 0.1249 -
2.8571 100 0.0114 -
4.2857 150 0.0001 -
5.7143 200 0.0001 -
7.1429 250 0.0001 -
8.5714 300 0.0001 -
10.0 350 0.0001 -
11.4286 400 0.0 -
12.8571 450 0.0001 -
14.2857 500 0.0 -
15.7143 550 0.0 -
17.1429 600 0.0 -
18.5714 650 0.0 -
20.0 700 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.46.1
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.20.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
1,131
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mini1013/master_cate_ac6

Base model

klue/roberta-base
Finetuned
(92)
this model

Evaluation results