Edit model card

SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
2
  • '몬스타기어 7500F 4070 SUPER 32G 500GB 조립PC AMD 7500F 4070SUPER 32G 500GB 몬스타 주식회사'
  • '사무용 주식 인텔 i3 12100F/GT710/SSD 250G/8G 조립컴퓨터 컴퓨터본체 데스크탑 컴퓨터 조립PC 기본사양(추가구성에서 사양변경 가능) (주)아싸컴'
  • '장우컴 가정용 PC (13100F/8G/GT1030/256G) i40207 (주)장우컴퍼니'
0
  • 'T) DELL 옵티플렉스 7010SFF-UB02KR (NVMe 512G 교체 장착) 윈11프로 DSP설치 으뜸'
  • '이그닉 비와이 프로 27Y 4535 OS 미포함 NVMe 512G + 16GB RAM (5년 A/S) 빌리어네어에프'
  • '10만원 쿠폰💖 삼성 DM500TFA-A78A 데스크탑 인텔 13세대 i7 [기본제품] (주)컴퓨존'
1
  • '레노버 씽크스테이션 P620 라이젠 스레드리퍼 프로 5945WX RAM16GB SSD256GB NVMe HDD1TB NOVGA Win11 Pro (주)디지탈노뜨'
  • '[Dell] Precision 3460 SFF i7-13700 8GB 1TB [추가구성 필요] (주)다인엔시스'
  • 'HP DL20 GEN10 E-2224 / 32G / HDD 1T x2 RAID1 / 서버2019 / AS3년 상품권 주식회사 제로원씨앤씨'

Evaluation

Metrics

Label Metric
all 0.8841

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_el0")
# Run inference
preds = model("LG전자 24V50N-GR35K  정윤아")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 11.6691 21
Label Training Sample Count
0 50
1 36
2 50

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (20, 20)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0455 1 0.4961 -
2.2727 50 0.005 -
4.5455 100 0.0001 -
6.8182 150 0.0001 -
9.0909 200 0.0 -
11.3636 250 0.0 -
13.6364 300 0.0 -
15.9091 350 0.0 -
18.1818 400 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.46.1
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.20.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
1,234
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mini1013/master_cate_el0

Base model

klue/roberta-base
Finetuned
(92)
this model

Evaluation results