SetFit with klue/roberta-base
This is a SetFit model that can be used for Text Classification. This SetFit model uses klue/roberta-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: klue/roberta-base
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 13 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
12 |
|
1 |
|
0 |
|
9 |
|
6 |
|
4 |
|
8 |
|
5 |
|
7 |
|
3 |
|
10 |
|
11 |
|
2 |
|
Evaluation
Metrics
Label | Metric |
---|---|
all | 0.9036 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_item_bt_setfit")
# Run inference
preds = model("아요델 콜라겐 리프팅 아이크림 20ml 6개 옵션없음 건강드림")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 9.8015 | 33 |
Label | Training Sample Count |
---|---|
0 | 1229 |
1 | 559 |
2 | 654 |
3 | 1528 |
4 | 563 |
5 | 677 |
6 | 1157 |
7 | 563 |
8 | 1037 |
9 | 1034 |
10 | 219 |
11 | 544 |
12 | 671 |
Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0006 | 1 | 0.3164 | - |
0.0307 | 50 | 0.3066 | - |
0.0613 | 100 | 0.2384 | - |
0.0920 | 150 | 0.226 | - |
0.1226 | 200 | 0.2162 | - |
0.1533 | 250 | 0.2202 | - |
0.1839 | 300 | 0.1973 | - |
0.2146 | 350 | 0.1818 | - |
0.2452 | 400 | 0.1629 | - |
0.2759 | 450 | 0.1734 | - |
0.3066 | 500 | 0.1624 | - |
0.3372 | 550 | 0.1435 | - |
0.3679 | 600 | 0.1433 | - |
0.3985 | 650 | 0.1259 | - |
0.4292 | 700 | 0.1175 | - |
0.4598 | 750 | 0.1201 | - |
0.4905 | 800 | 0.0958 | - |
0.5212 | 850 | 0.0938 | - |
0.5518 | 900 | 0.0784 | - |
0.5825 | 950 | 0.081 | - |
0.6131 | 1000 | 0.0673 | - |
0.6438 | 1050 | 0.0755 | - |
0.6744 | 1100 | 0.0498 | - |
0.7051 | 1150 | 0.0676 | - |
0.7357 | 1200 | 0.0474 | - |
0.7664 | 1250 | 0.0557 | - |
0.7971 | 1300 | 0.0384 | - |
0.8277 | 1350 | 0.0415 | - |
0.8584 | 1400 | 0.0415 | - |
0.8890 | 1450 | 0.0393 | - |
0.9197 | 1500 | 0.0333 | - |
0.9503 | 1550 | 0.0231 | - |
0.9810 | 1600 | 0.0162 | - |
1.0116 | 1650 | 0.024 | - |
1.0423 | 1700 | 0.0178 | - |
1.0730 | 1750 | 0.0175 | - |
1.1036 | 1800 | 0.0112 | - |
1.1343 | 1850 | 0.0109 | - |
1.1649 | 1900 | 0.0085 | - |
1.1956 | 1950 | 0.01 | - |
1.2262 | 2000 | 0.0076 | - |
1.2569 | 2050 | 0.0068 | - |
1.2876 | 2100 | 0.009 | - |
1.3182 | 2150 | 0.0066 | - |
1.3489 | 2200 | 0.0069 | - |
1.3795 | 2250 | 0.0034 | - |
1.4102 | 2300 | 0.0033 | - |
1.4408 | 2350 | 0.005 | - |
1.4715 | 2400 | 0.004 | - |
1.5021 | 2450 | 0.0014 | - |
1.5328 | 2500 | 0.0034 | - |
1.5635 | 2550 | 0.0026 | - |
1.5941 | 2600 | 0.003 | - |
1.6248 | 2650 | 0.0047 | - |
1.6554 | 2700 | 0.0019 | - |
1.6861 | 2750 | 0.0009 | - |
1.7167 | 2800 | 0.004 | - |
1.7474 | 2850 | 0.0006 | - |
1.7781 | 2900 | 0.0022 | - |
1.8087 | 2950 | 0.0033 | - |
1.8394 | 3000 | 0.0006 | - |
1.8700 | 3050 | 0.0021 | - |
1.9007 | 3100 | 0.0008 | - |
1.9313 | 3150 | 0.0037 | - |
1.9620 | 3200 | 0.0038 | - |
1.9926 | 3250 | 0.0013 | - |
2.0233 | 3300 | 0.0021 | - |
2.0540 | 3350 | 0.0008 | - |
2.0846 | 3400 | 0.0018 | - |
2.1153 | 3450 | 0.0011 | - |
2.1459 | 3500 | 0.0006 | - |
2.1766 | 3550 | 0.0003 | - |
2.2072 | 3600 | 0.0002 | - |
2.2379 | 3650 | 0.0002 | - |
2.2685 | 3700 | 0.0001 | - |
2.2992 | 3750 | 0.0003 | - |
2.3299 | 3800 | 0.0005 | - |
2.3605 | 3850 | 0.0027 | - |
2.3912 | 3900 | 0.0004 | - |
2.4218 | 3950 | 0.0018 | - |
2.4525 | 4000 | 0.0006 | - |
2.4831 | 4050 | 0.0002 | - |
2.5138 | 4100 | 0.0001 | - |
2.5445 | 4150 | 0.0008 | - |
2.5751 | 4200 | 0.0001 | - |
2.6058 | 4250 | 0.0002 | - |
2.6364 | 4300 | 0.0007 | - |
2.6671 | 4350 | 0.0002 | - |
2.6977 | 4400 | 0.0027 | - |
2.7284 | 4450 | 0.0002 | - |
2.7590 | 4500 | 0.0003 | - |
2.7897 | 4550 | 0.001 | - |
2.8204 | 4600 | 0.0001 | - |
2.8510 | 4650 | 0.0015 | - |
2.8817 | 4700 | 0.003 | - |
2.9123 | 4750 | 0.0002 | - |
2.9430 | 4800 | 0.0019 | - |
2.9736 | 4850 | 0.0018 | - |
3.0043 | 4900 | 0.0002 | - |
3.0349 | 4950 | 0.0001 | - |
3.0656 | 5000 | 0.001 | - |
3.0963 | 5050 | 0.0004 | - |
3.1269 | 5100 | 0.0004 | - |
3.1576 | 5150 | 0.0003 | - |
3.1882 | 5200 | 0.0008 | - |
3.2189 | 5250 | 0.0007 | - |
3.2495 | 5300 | 0.0008 | - |
3.2802 | 5350 | 0.0003 | - |
3.3109 | 5400 | 0.0006 | - |
3.3415 | 5450 | 0.0047 | - |
3.3722 | 5500 | 0.0019 | - |
3.4028 | 5550 | 0.0006 | - |
3.4335 | 5600 | 0.0002 | - |
3.4641 | 5650 | 0.0001 | - |
3.4948 | 5700 | 0.0001 | - |
3.5254 | 5750 | 0.0001 | - |
3.5561 | 5800 | 0.0001 | - |
3.5868 | 5850 | 0.0001 | - |
3.6174 | 5900 | 0.0014 | - |
3.6481 | 5950 | 0.0001 | - |
3.6787 | 6000 | 0.0002 | - |
3.7094 | 6050 | 0.0 | - |
3.7400 | 6100 | 0.0001 | - |
3.7707 | 6150 | 0.0002 | - |
3.8013 | 6200 | 0.0002 | - |
3.8320 | 6250 | 0.0017 | - |
3.8627 | 6300 | 0.0015 | - |
3.8933 | 6350 | 0.0008 | - |
3.9240 | 6400 | 0.0001 | - |
3.9546 | 6450 | 0.0003 | - |
3.9853 | 6500 | 0.0001 | - |
4.0159 | 6550 | 0.0 | - |
4.0466 | 6600 | 0.0005 | - |
4.0773 | 6650 | 0.0004 | - |
4.1079 | 6700 | 0.0 | - |
4.1386 | 6750 | 0.0001 | - |
4.1692 | 6800 | 0.0008 | - |
4.1999 | 6850 | 0.0001 | - |
4.2305 | 6900 | 0.0039 | - |
4.2612 | 6950 | 0.0001 | - |
4.2918 | 7000 | 0.0009 | - |
4.3225 | 7050 | 0.0005 | - |
4.3532 | 7100 | 0.0001 | - |
4.3838 | 7150 | 0.0009 | - |
4.4145 | 7200 | 0.0 | - |
4.4451 | 7250 | 0.0002 | - |
4.4758 | 7300 | 0.0 | - |
4.5064 | 7350 | 0.0 | - |
4.5371 | 7400 | 0.0 | - |
4.5677 | 7450 | 0.0 | - |
4.5984 | 7500 | 0.0 | - |
4.6291 | 7550 | 0.0 | - |
4.6597 | 7600 | 0.0 | - |
4.6904 | 7650 | 0.0005 | - |
4.7210 | 7700 | 0.0007 | - |
4.7517 | 7750 | 0.0 | - |
4.7823 | 7800 | 0.0 | - |
4.8130 | 7850 | 0.0005 | - |
4.8437 | 7900 | 0.0001 | - |
4.8743 | 7950 | 0.0 | - |
4.9050 | 8000 | 0.0 | - |
4.9356 | 8050 | 0.0001 | - |
4.9663 | 8100 | 0.0011 | - |
4.9969 | 8150 | 0.0001 | - |
5.0276 | 8200 | 0.0006 | - |
5.0582 | 8250 | 0.0018 | - |
5.0889 | 8300 | 0.0 | - |
5.1196 | 8350 | 0.0001 | - |
5.1502 | 8400 | 0.0001 | - |
5.1809 | 8450 | 0.0002 | - |
5.2115 | 8500 | 0.0 | - |
5.2422 | 8550 | 0.0004 | - |
5.2728 | 8600 | 0.0001 | - |
5.3035 | 8650 | 0.0 | - |
5.3342 | 8700 | 0.0 | - |
5.3648 | 8750 | 0.0001 | - |
5.3955 | 8800 | 0.0001 | - |
5.4261 | 8850 | 0.0001 | - |
5.4568 | 8900 | 0.0 | - |
5.4874 | 8950 | 0.0001 | - |
5.5181 | 9000 | 0.0015 | - |
5.5487 | 9050 | 0.0018 | - |
5.5794 | 9100 | 0.0001 | - |
5.6101 | 9150 | 0.0001 | - |
5.6407 | 9200 | 0.0015 | - |
5.6714 | 9250 | 0.0 | - |
5.7020 | 9300 | 0.0004 | - |
5.7327 | 9350 | 0.0001 | - |
5.7633 | 9400 | 0.0019 | - |
5.7940 | 9450 | 0.0019 | - |
5.8246 | 9500 | 0.0001 | - |
5.8553 | 9550 | 0.0001 | - |
5.8860 | 9600 | 0.0 | - |
5.9166 | 9650 | 0.0002 | - |
5.9473 | 9700 | 0.0001 | - |
5.9779 | 9750 | 0.0 | - |
6.0086 | 9800 | 0.0 | - |
6.0392 | 9850 | 0.0 | - |
6.0699 | 9900 | 0.0 | - |
6.1006 | 9950 | 0.0 | - |
6.1312 | 10000 | 0.0001 | - |
6.1619 | 10050 | 0.0 | - |
6.1925 | 10100 | 0.0 | - |
6.2232 | 10150 | 0.0003 | - |
6.2538 | 10200 | 0.0 | - |
6.2845 | 10250 | 0.0 | - |
6.3151 | 10300 | 0.0 | - |
6.3458 | 10350 | 0.0 | - |
6.3765 | 10400 | 0.0 | - |
6.4071 | 10450 | 0.0 | - |
6.4378 | 10500 | 0.0 | - |
6.4684 | 10550 | 0.0001 | - |
6.4991 | 10600 | 0.0 | - |
6.5297 | 10650 | 0.0001 | - |
6.5604 | 10700 | 0.0003 | - |
6.5910 | 10750 | 0.0 | - |
6.6217 | 10800 | 0.0 | - |
6.6524 | 10850 | 0.0 | - |
6.6830 | 10900 | 0.0 | - |
6.7137 | 10950 | 0.0 | - |
6.7443 | 11000 | 0.0 | - |
6.7750 | 11050 | 0.0 | - |
6.8056 | 11100 | 0.0001 | - |
6.8363 | 11150 | 0.0 | - |
6.8670 | 11200 | 0.0 | - |
6.8976 | 11250 | 0.0 | - |
6.9283 | 11300 | 0.0 | - |
6.9589 | 11350 | 0.0002 | - |
6.9896 | 11400 | 0.0006 | - |
7.0202 | 11450 | 0.0 | - |
7.0509 | 11500 | 0.0009 | - |
7.0815 | 11550 | 0.001 | - |
7.1122 | 11600 | 0.0003 | - |
7.1429 | 11650 | 0.0003 | - |
7.1735 | 11700 | 0.0 | - |
7.2042 | 11750 | 0.0 | - |
7.2348 | 11800 | 0.0 | - |
7.2655 | 11850 | 0.0 | - |
7.2961 | 11900 | 0.0001 | - |
7.3268 | 11950 | 0.0 | - |
7.3574 | 12000 | 0.0 | - |
7.3881 | 12050 | 0.0 | - |
7.4188 | 12100 | 0.0 | - |
7.4494 | 12150 | 0.0 | - |
7.4801 | 12200 | 0.0002 | - |
7.5107 | 12250 | 0.0 | - |
7.5414 | 12300 | 0.0 | - |
7.5720 | 12350 | 0.0001 | - |
7.6027 | 12400 | 0.0 | - |
7.6334 | 12450 | 0.0001 | - |
7.6640 | 12500 | 0.0 | - |
7.6947 | 12550 | 0.0 | - |
7.7253 | 12600 | 0.0 | - |
7.7560 | 12650 | 0.0 | - |
7.7866 | 12700 | 0.0 | - |
7.8173 | 12750 | 0.0 | - |
7.8479 | 12800 | 0.0 | - |
7.8786 | 12850 | 0.0 | - |
7.9093 | 12900 | 0.0 | - |
7.9399 | 12950 | 0.0 | - |
7.9706 | 13000 | 0.0 | - |
8.0012 | 13050 | 0.0001 | - |
8.0319 | 13100 | 0.0 | - |
8.0625 | 13150 | 0.0001 | - |
8.0932 | 13200 | 0.0013 | - |
8.1239 | 13250 | 0.0005 | - |
8.1545 | 13300 | 0.0 | - |
8.1852 | 13350 | 0.0 | - |
8.2158 | 13400 | 0.0 | - |
8.2465 | 13450 | 0.0 | - |
8.2771 | 13500 | 0.0014 | - |
8.3078 | 13550 | 0.0 | - |
8.3384 | 13600 | 0.0 | - |
8.3691 | 13650 | 0.0003 | - |
8.3998 | 13700 | 0.0 | - |
8.4304 | 13750 | 0.0 | - |
8.4611 | 13800 | 0.0 | - |
8.4917 | 13850 | 0.0 | - |
8.5224 | 13900 | 0.0 | - |
8.5530 | 13950 | 0.0 | - |
8.5837 | 14000 | 0.0 | - |
8.6143 | 14050 | 0.0 | - |
8.6450 | 14100 | 0.0 | - |
8.6757 | 14150 | 0.0 | - |
8.7063 | 14200 | 0.0 | - |
8.7370 | 14250 | 0.0001 | - |
8.7676 | 14300 | 0.0 | - |
8.7983 | 14350 | 0.0 | - |
8.8289 | 14400 | 0.0 | - |
8.8596 | 14450 | 0.0 | - |
8.8903 | 14500 | 0.0 | - |
8.9209 | 14550 | 0.0 | - |
8.9516 | 14600 | 0.0 | - |
8.9822 | 14650 | 0.0005 | - |
9.0129 | 14700 | 0.0001 | - |
9.0435 | 14750 | 0.0001 | - |
9.0742 | 14800 | 0.0 | - |
9.1048 | 14850 | 0.0 | - |
9.1355 | 14900 | 0.0 | - |
9.1662 | 14950 | 0.0 | - |
9.1968 | 15000 | 0.0 | - |
9.2275 | 15050 | 0.0001 | - |
9.2581 | 15100 | 0.0 | - |
9.2888 | 15150 | 0.0 | - |
9.3194 | 15200 | 0.0 | - |
9.3501 | 15250 | 0.0 | - |
9.3807 | 15300 | 0.0 | - |
9.4114 | 15350 | 0.0 | - |
9.4421 | 15400 | 0.0 | - |
9.4727 | 15450 | 0.0 | - |
9.5034 | 15500 | 0.0 | - |
9.5340 | 15550 | 0.0 | - |
9.5647 | 15600 | 0.0 | - |
9.5953 | 15650 | 0.0 | - |
9.6260 | 15700 | 0.0009 | - |
9.6567 | 15750 | 0.0 | - |
9.6873 | 15800 | 0.0 | - |
9.7180 | 15850 | 0.0 | - |
9.7486 | 15900 | 0.0 | - |
9.7793 | 15950 | 0.0 | - |
9.8099 | 16000 | 0.0 | - |
9.8406 | 16050 | 0.0 | - |
9.8712 | 16100 | 0.0001 | - |
9.9019 | 16150 | 0.0 | - |
9.9326 | 16200 | 0.0007 | - |
9.9632 | 16250 | 0.0001 | - |
9.9939 | 16300 | 0.0002 | - |
10.0245 | 16350 | 0.0001 | - |
10.0552 | 16400 | 0.0 | - |
10.0858 | 16450 | 0.0 | - |
10.1165 | 16500 | 0.0 | - |
10.1471 | 16550 | 0.0 | - |
10.1778 | 16600 | 0.0003 | - |
10.2085 | 16650 | 0.0003 | - |
10.2391 | 16700 | 0.0 | - |
10.2698 | 16750 | 0.0001 | - |
10.3004 | 16800 | 0.0 | - |
10.3311 | 16850 | 0.001 | - |
10.3617 | 16900 | 0.0 | - |
10.3924 | 16950 | 0.0 | - |
10.4231 | 17000 | 0.0 | - |
10.4537 | 17050 | 0.0 | - |
10.4844 | 17100 | 0.0 | - |
10.5150 | 17150 | 0.0 | - |
10.5457 | 17200 | 0.0 | - |
10.5763 | 17250 | 0.0 | - |
10.6070 | 17300 | 0.0 | - |
10.6376 | 17350 | 0.0 | - |
10.6683 | 17400 | 0.0013 | - |
10.6990 | 17450 | 0.0 | - |
10.7296 | 17500 | 0.0 | - |
10.7603 | 17550 | 0.0 | - |
10.7909 | 17600 | 0.0 | - |
10.8216 | 17650 | 0.0 | - |
10.8522 | 17700 | 0.0 | - |
10.8829 | 17750 | 0.0 | - |
10.9135 | 17800 | 0.0 | - |
10.9442 | 17850 | 0.0 | - |
10.9749 | 17900 | 0.0 | - |
11.0055 | 17950 | 0.0 | - |
11.0362 | 18000 | 0.0 | - |
11.0668 | 18050 | 0.0001 | - |
11.0975 | 18100 | 0.0 | - |
11.1281 | 18150 | 0.0 | - |
11.1588 | 18200 | 0.0 | - |
11.1895 | 18250 | 0.0 | - |
11.2201 | 18300 | 0.0 | - |
11.2508 | 18350 | 0.0004 | - |
11.2814 | 18400 | 0.0 | - |
11.3121 | 18450 | 0.0 | - |
11.3427 | 18500 | 0.0 | - |
11.3734 | 18550 | 0.0 | - |
11.4040 | 18600 | 0.0 | - |
11.4347 | 18650 | 0.0 | - |
11.4654 | 18700 | 0.0 | - |
11.4960 | 18750 | 0.0 | - |
11.5267 | 18800 | 0.0 | - |
11.5573 | 18850 | 0.0 | - |
11.5880 | 18900 | 0.0 | - |
11.6186 | 18950 | 0.0 | - |
11.6493 | 19000 | 0.0 | - |
11.6800 | 19050 | 0.0 | - |
11.7106 | 19100 | 0.0 | - |
11.7413 | 19150 | 0.0 | - |
11.7719 | 19200 | 0.0 | - |
11.8026 | 19250 | 0.0 | - |
11.8332 | 19300 | 0.0 | - |
11.8639 | 19350 | 0.0 | - |
11.8945 | 19400 | 0.0 | - |
11.9252 | 19450 | 0.0 | - |
11.9559 | 19500 | 0.0 | - |
11.9865 | 19550 | 0.0 | - |
12.0172 | 19600 | 0.0 | - |
12.0478 | 19650 | 0.0 | - |
12.0785 | 19700 | 0.0 | - |
12.1091 | 19750 | 0.0 | - |
12.1398 | 19800 | 0.0 | - |
12.1704 | 19850 | 0.0 | - |
12.2011 | 19900 | 0.0 | - |
12.2318 | 19950 | 0.0 | - |
12.2624 | 20000 | 0.0 | - |
12.2931 | 20050 | 0.0 | - |
12.3237 | 20100 | 0.0 | - |
12.3544 | 20150 | 0.0 | - |
12.3850 | 20200 | 0.0 | - |
12.4157 | 20250 | 0.0 | - |
12.4464 | 20300 | 0.0 | - |
12.4770 | 20350 | 0.0 | - |
12.5077 | 20400 | 0.0 | - |
12.5383 | 20450 | 0.0 | - |
12.5690 | 20500 | 0.0 | - |
12.5996 | 20550 | 0.0 | - |
12.6303 | 20600 | 0.0004 | - |
12.6609 | 20650 | 0.0 | - |
12.6916 | 20700 | 0.0 | - |
12.7223 | 20750 | 0.0 | - |
12.7529 | 20800 | 0.0 | - |
12.7836 | 20850 | 0.0 | - |
12.8142 | 20900 | 0.0 | - |
12.8449 | 20950 | 0.0 | - |
12.8755 | 21000 | 0.0 | - |
12.9062 | 21050 | 0.0 | - |
12.9368 | 21100 | 0.0 | - |
12.9675 | 21150 | 0.0 | - |
12.9982 | 21200 | 0.0 | - |
13.0288 | 21250 | 0.0 | - |
13.0595 | 21300 | 0.0 | - |
13.0901 | 21350 | 0.0 | - |
13.1208 | 21400 | 0.0 | - |
13.1514 | 21450 | 0.0 | - |
13.1821 | 21500 | 0.0 | - |
13.2128 | 21550 | 0.0 | - |
13.2434 | 21600 | 0.0 | - |
13.2741 | 21650 | 0.0 | - |
13.3047 | 21700 | 0.0 | - |
13.3354 | 21750 | 0.0 | - |
13.3660 | 21800 | 0.0 | - |
13.3967 | 21850 | 0.0 | - |
13.4273 | 21900 | 0.0 | - |
13.4580 | 21950 | 0.0001 | - |
13.4887 | 22000 | 0.0 | - |
13.5193 | 22050 | 0.0003 | - |
13.5500 | 22100 | 0.0001 | - |
13.5806 | 22150 | 0.0 | - |
13.6113 | 22200 | 0.0 | - |
13.6419 | 22250 | 0.0 | - |
13.6726 | 22300 | 0.0 | - |
13.7032 | 22350 | 0.0 | - |
13.7339 | 22400 | 0.0019 | - |
13.7646 | 22450 | 0.0 | - |
13.7952 | 22500 | 0.0 | - |
13.8259 | 22550 | 0.0 | - |
13.8565 | 22600 | 0.0 | - |
13.8872 | 22650 | 0.0 | - |
13.9178 | 22700 | 0.0 | - |
13.9485 | 22750 | 0.0 | - |
13.9792 | 22800 | 0.0 | - |
14.0098 | 22850 | 0.0 | - |
14.0405 | 22900 | 0.0 | - |
14.0711 | 22950 | 0.0 | - |
14.1018 | 23000 | 0.0 | - |
14.1324 | 23050 | 0.0 | - |
14.1631 | 23100 | 0.0 | - |
14.1937 | 23150 | 0.0 | - |
14.2244 | 23200 | 0.0 | - |
14.2551 | 23250 | 0.0 | - |
14.2857 | 23300 | 0.0 | - |
14.3164 | 23350 | 0.0 | - |
14.3470 | 23400 | 0.0 | - |
14.3777 | 23450 | 0.0 | - |
14.4083 | 23500 | 0.0 | - |
14.4390 | 23550 | 0.0 | - |
14.4697 | 23600 | 0.0 | - |
14.5003 | 23650 | 0.0 | - |
14.5310 | 23700 | 0.0 | - |
14.5616 | 23750 | 0.0 | - |
14.5923 | 23800 | 0.0 | - |
14.6229 | 23850 | 0.0 | - |
14.6536 | 23900 | 0.0 | - |
14.6842 | 23950 | 0.0 | - |
14.7149 | 24000 | 0.0 | - |
14.7456 | 24050 | 0.0 | - |
14.7762 | 24100 | 0.0 | - |
14.8069 | 24150 | 0.0 | - |
14.8375 | 24200 | 0.0 | - |
14.8682 | 24250 | 0.0 | - |
14.8988 | 24300 | 0.0 | - |
14.9295 | 24350 | 0.0 | - |
14.9601 | 24400 | 0.0 | - |
14.9908 | 24450 | 0.0 | - |
15.0215 | 24500 | 0.0 | - |
15.0521 | 24550 | 0.0 | - |
15.0828 | 24600 | 0.0 | - |
15.1134 | 24650 | 0.002 | - |
15.1441 | 24700 | 0.0 | - |
15.1747 | 24750 | 0.0 | - |
15.2054 | 24800 | 0.0 | - |
15.2361 | 24850 | 0.0 | - |
15.2667 | 24900 | 0.0 | - |
15.2974 | 24950 | 0.0 | - |
15.3280 | 25000 | 0.0 | - |
15.3587 | 25050 | 0.0 | - |
15.3893 | 25100 | 0.0 | - |
15.4200 | 25150 | 0.0 | - |
15.4506 | 25200 | 0.0 | - |
15.4813 | 25250 | 0.0 | - |
15.5120 | 25300 | 0.0 | - |
15.5426 | 25350 | 0.0 | - |
15.5733 | 25400 | 0.0 | - |
15.6039 | 25450 | 0.0 | - |
15.6346 | 25500 | 0.0 | - |
15.6652 | 25550 | 0.0 | - |
15.6959 | 25600 | 0.0 | - |
15.7265 | 25650 | 0.0 | - |
15.7572 | 25700 | 0.0 | - |
15.7879 | 25750 | 0.0 | - |
15.8185 | 25800 | 0.0 | - |
15.8492 | 25850 | 0.0 | - |
15.8798 | 25900 | 0.0 | - |
15.9105 | 25950 | 0.0 | - |
15.9411 | 26000 | 0.0 | - |
15.9718 | 26050 | 0.0 | - |
16.0025 | 26100 | 0.0 | - |
16.0331 | 26150 | 0.0 | - |
16.0638 | 26200 | 0.0 | - |
16.0944 | 26250 | 0.0 | - |
16.1251 | 26300 | 0.0 | - |
16.1557 | 26350 | 0.0 | - |
16.1864 | 26400 | 0.0 | - |
16.2170 | 26450 | 0.0 | - |
16.2477 | 26500 | 0.0 | - |
16.2784 | 26550 | 0.0 | - |
16.3090 | 26600 | 0.0 | - |
16.3397 | 26650 | 0.0 | - |
16.3703 | 26700 | 0.0 | - |
16.4010 | 26750 | 0.0 | - |
16.4316 | 26800 | 0.0 | - |
16.4623 | 26850 | 0.0 | - |
16.4929 | 26900 | 0.0 | - |
16.5236 | 26950 | 0.0 | - |
16.5543 | 27000 | 0.0 | - |
16.5849 | 27050 | 0.0 | - |
16.6156 | 27100 | 0.0 | - |
16.6462 | 27150 | 0.0 | - |
16.6769 | 27200 | 0.0 | - |
16.7075 | 27250 | 0.0 | - |
16.7382 | 27300 | 0.0 | - |
16.7689 | 27350 | 0.0 | - |
16.7995 | 27400 | 0.0 | - |
16.8302 | 27450 | 0.0 | - |
16.8608 | 27500 | 0.0 | - |
16.8915 | 27550 | 0.0 | - |
16.9221 | 27600 | 0.0 | - |
16.9528 | 27650 | 0.0 | - |
16.9834 | 27700 | 0.0 | - |
17.0141 | 27750 | 0.0 | - |
17.0448 | 27800 | 0.0 | - |
17.0754 | 27850 | 0.0 | - |
17.1061 | 27900 | 0.0 | - |
17.1367 | 27950 | 0.0 | - |
17.1674 | 28000 | 0.0 | - |
17.1980 | 28050 | 0.0 | - |
17.2287 | 28100 | 0.0 | - |
17.2594 | 28150 | 0.0 | - |
17.2900 | 28200 | 0.0 | - |
17.3207 | 28250 | 0.0 | - |
17.3513 | 28300 | 0.0 | - |
17.3820 | 28350 | 0.0 | - |
17.4126 | 28400 | 0.0 | - |
17.4433 | 28450 | 0.0 | - |
17.4739 | 28500 | 0.0 | - |
17.5046 | 28550 | 0.0 | - |
17.5353 | 28600 | 0.0 | - |
17.5659 | 28650 | 0.0 | - |
17.5966 | 28700 | 0.0 | - |
17.6272 | 28750 | 0.0 | - |
17.6579 | 28800 | 0.0 | - |
17.6885 | 28850 | 0.0 | - |
17.7192 | 28900 | 0.0 | - |
17.7498 | 28950 | 0.0 | - |
17.7805 | 29000 | 0.0 | - |
17.8112 | 29050 | 0.0 | - |
17.8418 | 29100 | 0.0 | - |
17.8725 | 29150 | 0.0 | - |
17.9031 | 29200 | 0.0001 | - |
17.9338 | 29250 | 0.0 | - |
17.9644 | 29300 | 0.0 | - |
17.9951 | 29350 | 0.0 | - |
18.0258 | 29400 | 0.0 | - |
18.0564 | 29450 | 0.0 | - |
18.0871 | 29500 | 0.0 | - |
18.1177 | 29550 | 0.0 | - |
18.1484 | 29600 | 0.0 | - |
18.1790 | 29650 | 0.0 | - |
18.2097 | 29700 | 0.0 | - |
18.2403 | 29750 | 0.0 | - |
18.2710 | 29800 | 0.0 | - |
18.3017 | 29850 | 0.0 | - |
18.3323 | 29900 | 0.0 | - |
18.3630 | 29950 | 0.0 | - |
18.3936 | 30000 | 0.0 | - |
18.4243 | 30050 | 0.0 | - |
18.4549 | 30100 | 0.0 | - |
18.4856 | 30150 | 0.0 | - |
18.5162 | 30200 | 0.0 | - |
18.5469 | 30250 | 0.0 | - |
18.5776 | 30300 | 0.0 | - |
18.6082 | 30350 | 0.0 | - |
18.6389 | 30400 | 0.0 | - |
18.6695 | 30450 | 0.0 | - |
18.7002 | 30500 | 0.0 | - |
18.7308 | 30550 | 0.0 | - |
18.7615 | 30600 | 0.0 | - |
18.7922 | 30650 | 0.0 | - |
18.8228 | 30700 | 0.0 | - |
18.8535 | 30750 | 0.0 | - |
18.8841 | 30800 | 0.0 | - |
18.9148 | 30850 | 0.0 | - |
18.9454 | 30900 | 0.0 | - |
18.9761 | 30950 | 0.0 | - |
19.0067 | 31000 | 0.0 | - |
19.0374 | 31050 | 0.0 | - |
19.0681 | 31100 | 0.0 | - |
19.0987 | 31150 | 0.0 | - |
19.1294 | 31200 | 0.0 | - |
19.1600 | 31250 | 0.0 | - |
19.1907 | 31300 | 0.0 | - |
19.2213 | 31350 | 0.0 | - |
19.2520 | 31400 | 0.0 | - |
19.2826 | 31450 | 0.0 | - |
19.3133 | 31500 | 0.0 | - |
19.3440 | 31550 | 0.0 | - |
19.3746 | 31600 | 0.0 | - |
19.4053 | 31650 | 0.0 | - |
19.4359 | 31700 | 0.0 | - |
19.4666 | 31750 | 0.0 | - |
19.4972 | 31800 | 0.0 | - |
19.5279 | 31850 | 0.0 | - |
19.5586 | 31900 | 0.0 | - |
19.5892 | 31950 | 0.0 | - |
19.6199 | 32000 | 0.0 | - |
19.6505 | 32050 | 0.0 | - |
19.6812 | 32100 | 0.0 | - |
19.7118 | 32150 | 0.0 | - |
19.7425 | 32200 | 0.0 | - |
19.7731 | 32250 | 0.0 | - |
19.8038 | 32300 | 0.0 | - |
19.8345 | 32350 | 0.0 | - |
19.8651 | 32400 | 0.0 | - |
19.8958 | 32450 | 0.0 | - |
19.9264 | 32500 | 0.0 | - |
19.9571 | 32550 | 0.0 | - |
19.9877 | 32600 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.45.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 34
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for mini1013/master_item_bt_setfit
Base model
klue/roberta-base