SetFit with klue/roberta-base
This is a SetFit model that can be used for Text Classification. This SetFit model uses klue/roberta-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: klue/roberta-base
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 26 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
7 |
|
2 |
|
5 |
|
17 |
|
4 |
|
18 |
|
8 |
|
10 |
|
20 |
|
0 |
|
12 |
|
11 |
|
1 |
|
13 |
|
15 |
|
25 |
|
14 |
|
16 |
|
6 |
|
24 |
|
3 |
|
21 |
|
23 |
|
19 |
|
9 |
|
22 |
|
Evaluation
Metrics
Label | Metric |
---|---|
all | 0.9105 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_item_el")
# Run inference
preds = model("힐링쉴드 애플워치 케이스 PCC시리즈 라이트핑크 38mm ")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 9.6062 | 34 |
Label | Training Sample Count |
---|---|
0 | 136 |
1 | 500 |
2 | 408 |
3 | 243 |
4 | 913 |
5 | 621 |
6 | 50 |
7 | 422 |
8 | 394 |
9 | 50 |
10 | 218 |
11 | 808 |
12 | 183 |
13 | 350 |
14 | 979 |
15 | 795 |
16 | 510 |
17 | 2159 |
18 | 413 |
19 | 129 |
20 | 950 |
21 | 50 |
22 | 200 |
23 | 181 |
24 | 50 |
25 | 699 |
Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0005 | 1 | 0.4306 | - |
0.0258 | 50 | 0.3897 | - |
0.0515 | 100 | 0.3822 | - |
0.0773 | 150 | 0.3469 | - |
0.1031 | 200 | 0.2699 | - |
0.1289 | 250 | 0.2408 | - |
0.1546 | 300 | 0.1997 | - |
0.1804 | 350 | 0.1918 | - |
0.2062 | 400 | 0.1587 | - |
0.2320 | 450 | 0.1616 | - |
0.2577 | 500 | 0.1564 | - |
0.2835 | 550 | 0.1529 | - |
0.3093 | 600 | 0.1266 | - |
0.3351 | 650 | 0.1107 | - |
0.3608 | 700 | 0.126 | - |
0.3866 | 750 | 0.1178 | - |
0.4124 | 800 | 0.1081 | - |
0.4381 | 850 | 0.0919 | - |
0.4639 | 900 | 0.0781 | - |
0.4897 | 950 | 0.0776 | - |
0.5155 | 1000 | 0.0844 | - |
0.5412 | 1050 | 0.0782 | - |
0.5670 | 1100 | 0.0625 | - |
0.5928 | 1150 | 0.0659 | - |
0.6186 | 1200 | 0.0621 | - |
0.6443 | 1250 | 0.0455 | - |
0.6701 | 1300 | 0.0508 | - |
0.6959 | 1350 | 0.0468 | - |
0.7216 | 1400 | 0.0539 | - |
0.7474 | 1450 | 0.05 | - |
0.7732 | 1500 | 0.0333 | - |
0.7990 | 1550 | 0.0359 | - |
0.8247 | 1600 | 0.0277 | - |
0.8505 | 1650 | 0.0266 | - |
0.8763 | 1700 | 0.03 | - |
0.9021 | 1750 | 0.0172 | - |
0.9278 | 1800 | 0.0275 | - |
0.9536 | 1850 | 0.0264 | - |
0.9794 | 1900 | 0.0195 | - |
1.0052 | 1950 | 0.024 | - |
1.0309 | 2000 | 0.0161 | - |
1.0567 | 2050 | 0.0131 | - |
1.0825 | 2100 | 0.0211 | - |
1.1082 | 2150 | 0.023 | - |
1.1340 | 2200 | 0.0174 | - |
1.1598 | 2250 | 0.0127 | - |
1.1856 | 2300 | 0.0061 | - |
1.2113 | 2350 | 0.0071 | - |
1.2371 | 2400 | 0.0164 | - |
1.2629 | 2450 | 0.0098 | - |
1.2887 | 2500 | 0.0094 | - |
1.3144 | 2550 | 0.0062 | - |
1.3402 | 2600 | 0.0044 | - |
1.3660 | 2650 | 0.007 | - |
1.3918 | 2700 | 0.0083 | - |
1.4175 | 2750 | 0.0081 | - |
1.4433 | 2800 | 0.0076 | - |
1.4691 | 2850 | 0.0091 | - |
1.4948 | 2900 | 0.0044 | - |
1.5206 | 2950 | 0.003 | - |
1.5464 | 3000 | 0.0036 | - |
1.5722 | 3050 | 0.0016 | - |
1.5979 | 3100 | 0.0025 | - |
1.6237 | 3150 | 0.0029 | - |
1.6495 | 3200 | 0.0021 | - |
1.6753 | 3250 | 0.0025 | - |
1.7010 | 3300 | 0.0032 | - |
1.7268 | 3350 | 0.0013 | - |
1.7526 | 3400 | 0.0015 | - |
1.7784 | 3450 | 0.0037 | - |
1.8041 | 3500 | 0.0062 | - |
1.8299 | 3550 | 0.0022 | - |
1.8557 | 3600 | 0.0032 | - |
1.8814 | 3650 | 0.0011 | - |
1.9072 | 3700 | 0.0022 | - |
1.9330 | 3750 | 0.0032 | - |
1.9588 | 3800 | 0.001 | - |
1.9845 | 3850 | 0.0012 | - |
2.0103 | 3900 | 0.0007 | - |
2.0361 | 3950 | 0.0009 | - |
2.0619 | 4000 | 0.0007 | - |
2.0876 | 4050 | 0.0004 | - |
2.1134 | 4100 | 0.0014 | - |
2.1392 | 4150 | 0.002 | - |
2.1649 | 4200 | 0.0008 | - |
2.1907 | 4250 | 0.0003 | - |
2.2165 | 4300 | 0.0005 | - |
2.2423 | 4350 | 0.001 | - |
2.2680 | 4400 | 0.0002 | - |
2.2938 | 4450 | 0.0007 | - |
2.3196 | 4500 | 0.0018 | - |
2.3454 | 4550 | 0.0002 | - |
2.3711 | 4600 | 0.0021 | - |
2.3969 | 4650 | 0.0006 | - |
2.4227 | 4700 | 0.0014 | - |
2.4485 | 4750 | 0.0028 | - |
2.4742 | 4800 | 0.0021 | - |
2.5 | 4850 | 0.0001 | - |
2.5258 | 4900 | 0.0001 | - |
2.5515 | 4950 | 0.0004 | - |
2.5773 | 5000 | 0.0002 | - |
2.6031 | 5050 | 0.0006 | - |
2.6289 | 5100 | 0.0004 | - |
2.6546 | 5150 | 0.0001 | - |
2.6804 | 5200 | 0.0002 | - |
2.7062 | 5250 | 0.0005 | - |
2.7320 | 5300 | 0.0001 | - |
2.7577 | 5350 | 0.0005 | - |
2.7835 | 5400 | 0.0001 | - |
2.8093 | 5450 | 0.0016 | - |
2.8351 | 5500 | 0.002 | - |
2.8608 | 5550 | 0.0002 | - |
2.8866 | 5600 | 0.0014 | - |
2.9124 | 5650 | 0.0004 | - |
2.9381 | 5700 | 0.0001 | - |
2.9639 | 5750 | 0.0018 | - |
2.9897 | 5800 | 0.0003 | - |
3.0155 | 5850 | 0.0005 | - |
3.0412 | 5900 | 0.0001 | - |
3.0670 | 5950 | 0.0002 | - |
3.0928 | 6000 | 0.0013 | - |
3.1186 | 6050 | 0.0024 | - |
3.1443 | 6100 | 0.0004 | - |
3.1701 | 6150 | 0.0006 | - |
3.1959 | 6200 | 0.0004 | - |
3.2216 | 6250 | 0.0005 | - |
3.2474 | 6300 | 0.0001 | - |
3.2732 | 6350 | 0.0002 | - |
3.2990 | 6400 | 0.0003 | - |
3.3247 | 6450 | 0.0018 | - |
3.3505 | 6500 | 0.0001 | - |
3.3763 | 6550 | 0.0001 | - |
3.4021 | 6600 | 0.0001 | - |
3.4278 | 6650 | 0.0001 | - |
3.4536 | 6700 | 0.0001 | - |
3.4794 | 6750 | 0.002 | - |
3.5052 | 6800 | 0.0001 | - |
3.5309 | 6850 | 0.0008 | - |
3.5567 | 6900 | 0.0006 | - |
3.5825 | 6950 | 0.0008 | - |
3.6082 | 7000 | 0.0001 | - |
3.6340 | 7050 | 0.0001 | - |
3.6598 | 7100 | 0.0001 | - |
3.6856 | 7150 | 0.0011 | - |
3.7113 | 7200 | 0.0034 | - |
3.7371 | 7250 | 0.0008 | - |
3.7629 | 7300 | 0.0002 | - |
3.7887 | 7350 | 0.0001 | - |
3.8144 | 7400 | 0.0002 | - |
3.8402 | 7450 | 0.002 | - |
3.8660 | 7500 | 0.0007 | - |
3.8918 | 7550 | 0.0024 | - |
3.9175 | 7600 | 0.003 | - |
3.9433 | 7650 | 0.0001 | - |
3.9691 | 7700 | 0.0003 | - |
3.9948 | 7750 | 0.0002 | - |
4.0206 | 7800 | 0.0002 | - |
4.0464 | 7850 | 0.0001 | - |
4.0722 | 7900 | 0.0 | - |
4.0979 | 7950 | 0.0 | - |
4.1237 | 8000 | 0.0001 | - |
4.1495 | 8050 | 0.001 | - |
4.1753 | 8100 | 0.0001 | - |
4.2010 | 8150 | 0.0 | - |
4.2268 | 8200 | 0.0018 | - |
4.2526 | 8250 | 0.0001 | - |
4.2784 | 8300 | 0.0 | - |
4.3041 | 8350 | 0.0014 | - |
4.3299 | 8400 | 0.0007 | - |
4.3557 | 8450 | 0.0003 | - |
4.3814 | 8500 | 0.0002 | - |
4.4072 | 8550 | 0.0002 | - |
4.4330 | 8600 | 0.0011 | - |
4.4588 | 8650 | 0.0002 | - |
4.4845 | 8700 | 0.0001 | - |
4.5103 | 8750 | 0.0003 | - |
4.5361 | 8800 | 0.0001 | - |
4.5619 | 8850 | 0.0 | - |
4.5876 | 8900 | 0.0 | - |
4.6134 | 8950 | 0.0 | - |
4.6392 | 9000 | 0.0001 | - |
4.6649 | 9050 | 0.0001 | - |
4.6907 | 9100 | 0.0001 | - |
4.7165 | 9150 | 0.0 | - |
4.7423 | 9200 | 0.0 | - |
4.7680 | 9250 | 0.0003 | - |
4.7938 | 9300 | 0.0012 | - |
4.8196 | 9350 | 0.0004 | - |
4.8454 | 9400 | 0.0005 | - |
4.8711 | 9450 | 0.0019 | - |
4.8969 | 9500 | 0.0001 | - |
4.9227 | 9550 | 0.0013 | - |
4.9485 | 9600 | 0.0001 | - |
4.9742 | 9650 | 0.0002 | - |
5.0 | 9700 | 0.0001 | - |
5.0258 | 9750 | 0.0 | - |
5.0515 | 9800 | 0.0 | - |
5.0773 | 9850 | 0.0009 | - |
5.1031 | 9900 | 0.0 | - |
5.1289 | 9950 | 0.0 | - |
5.1546 | 10000 | 0.0 | - |
5.1804 | 10050 | 0.0 | - |
5.2062 | 10100 | 0.002 | - |
5.2320 | 10150 | 0.0003 | - |
5.2577 | 10200 | 0.0001 | - |
5.2835 | 10250 | 0.0 | - |
5.3093 | 10300 | 0.0025 | - |
5.3351 | 10350 | 0.0 | - |
5.3608 | 10400 | 0.0001 | - |
5.3866 | 10450 | 0.0 | - |
5.4124 | 10500 | 0.0 | - |
5.4381 | 10550 | 0.0 | - |
5.4639 | 10600 | 0.0 | - |
5.4897 | 10650 | 0.0 | - |
5.5155 | 10700 | 0.0 | - |
5.5412 | 10750 | 0.0 | - |
5.5670 | 10800 | 0.0 | - |
5.5928 | 10850 | 0.0 | - |
5.6186 | 10900 | 0.0001 | - |
5.6443 | 10950 | 0.0 | - |
5.6701 | 11000 | 0.0001 | - |
5.6959 | 11050 | 0.0 | - |
5.7216 | 11100 | 0.0 | - |
5.7474 | 11150 | 0.0016 | - |
5.7732 | 11200 | 0.0033 | - |
5.7990 | 11250 | 0.001 | - |
5.8247 | 11300 | 0.0001 | - |
5.8505 | 11350 | 0.0 | - |
5.8763 | 11400 | 0.0 | - |
5.9021 | 11450 | 0.0 | - |
5.9278 | 11500 | 0.0002 | - |
5.9536 | 11550 | 0.0 | - |
5.9794 | 11600 | 0.0001 | - |
6.0052 | 11650 | 0.0012 | - |
6.0309 | 11700 | 0.0001 | - |
6.0567 | 11750 | 0.0001 | - |
6.0825 | 11800 | 0.0018 | - |
6.1082 | 11850 | 0.0006 | - |
6.1340 | 11900 | 0.0001 | - |
6.1598 | 11950 | 0.0 | - |
6.1856 | 12000 | 0.0042 | - |
6.2113 | 12050 | 0.0001 | - |
6.2371 | 12100 | 0.0001 | - |
6.2629 | 12150 | 0.0 | - |
6.2887 | 12200 | 0.0 | - |
6.3144 | 12250 | 0.0 | - |
6.3402 | 12300 | 0.0006 | - |
6.3660 | 12350 | 0.0001 | - |
6.3918 | 12400 | 0.0 | - |
6.4175 | 12450 | 0.0 | - |
6.4433 | 12500 | 0.0 | - |
6.4691 | 12550 | 0.0 | - |
6.4948 | 12600 | 0.0001 | - |
6.5206 | 12650 | 0.0 | - |
6.5464 | 12700 | 0.0 | - |
6.5722 | 12750 | 0.0 | - |
6.5979 | 12800 | 0.0 | - |
6.6237 | 12850 | 0.0 | - |
6.6495 | 12900 | 0.0 | - |
6.6753 | 12950 | 0.0 | - |
6.7010 | 13000 | 0.0 | - |
6.7268 | 13050 | 0.0 | - |
6.7526 | 13100 | 0.0001 | - |
6.7784 | 13150 | 0.0 | - |
6.8041 | 13200 | 0.0 | - |
6.8299 | 13250 | 0.0 | - |
6.8557 | 13300 | 0.0 | - |
6.8814 | 13350 | 0.0002 | - |
6.9072 | 13400 | 0.0001 | - |
6.9330 | 13450 | 0.0 | - |
6.9588 | 13500 | 0.0 | - |
6.9845 | 13550 | 0.0012 | - |
7.0103 | 13600 | 0.0 | - |
7.0361 | 13650 | 0.0001 | - |
7.0619 | 13700 | 0.0047 | - |
7.0876 | 13750 | 0.002 | - |
7.1134 | 13800 | 0.0001 | - |
7.1392 | 13850 | 0.0012 | - |
7.1649 | 13900 | 0.0 | - |
7.1907 | 13950 | 0.0015 | - |
7.2165 | 14000 | 0.0 | - |
7.2423 | 14050 | 0.0 | - |
7.2680 | 14100 | 0.0 | - |
7.2938 | 14150 | 0.0 | - |
7.3196 | 14200 | 0.0 | - |
7.3454 | 14250 | 0.0 | - |
7.3711 | 14300 | 0.0 | - |
7.3969 | 14350 | 0.0 | - |
7.4227 | 14400 | 0.0 | - |
7.4485 | 14450 | 0.0 | - |
7.4742 | 14500 | 0.0 | - |
7.5 | 14550 | 0.0 | - |
7.5258 | 14600 | 0.0001 | - |
7.5515 | 14650 | 0.0 | - |
7.5773 | 14700 | 0.0001 | - |
7.6031 | 14750 | 0.0035 | - |
7.6289 | 14800 | 0.0 | - |
7.6546 | 14850 | 0.0 | - |
7.6804 | 14900 | 0.0003 | - |
7.7062 | 14950 | 0.0 | - |
7.7320 | 15000 | 0.0 | - |
7.7577 | 15050 | 0.0 | - |
7.7835 | 15100 | 0.0 | - |
7.8093 | 15150 | 0.0 | - |
7.8351 | 15200 | 0.0 | - |
7.8608 | 15250 | 0.0 | - |
7.8866 | 15300 | 0.0019 | - |
7.9124 | 15350 | 0.0018 | - |
7.9381 | 15400 | 0.0 | - |
7.9639 | 15450 | 0.0001 | - |
7.9897 | 15500 | 0.0 | - |
8.0155 | 15550 | 0.0 | - |
8.0412 | 15600 | 0.0 | - |
8.0670 | 15650 | 0.0 | - |
8.0928 | 15700 | 0.0 | - |
8.1186 | 15750 | 0.0001 | - |
8.1443 | 15800 | 0.0001 | - |
8.1701 | 15850 | 0.0 | - |
8.1959 | 15900 | 0.0 | - |
8.2216 | 15950 | 0.0 | - |
8.2474 | 16000 | 0.0 | - |
8.2732 | 16050 | 0.0 | - |
8.2990 | 16100 | 0.0 | - |
8.3247 | 16150 | 0.0039 | - |
8.3505 | 16200 | 0.0003 | - |
8.3763 | 16250 | 0.0 | - |
8.4021 | 16300 | 0.0 | - |
8.4278 | 16350 | 0.0 | - |
8.4536 | 16400 | 0.0001 | - |
8.4794 | 16450 | 0.0 | - |
8.5052 | 16500 | 0.0 | - |
8.5309 | 16550 | 0.0 | - |
8.5567 | 16600 | 0.0 | - |
8.5825 | 16650 | 0.0 | - |
8.6082 | 16700 | 0.0 | - |
8.6340 | 16750 | 0.0003 | - |
8.6598 | 16800 | 0.0 | - |
8.6856 | 16850 | 0.0 | - |
8.7113 | 16900 | 0.0019 | - |
8.7371 | 16950 | 0.0 | - |
8.7629 | 17000 | 0.0 | - |
8.7887 | 17050 | 0.0 | - |
8.8144 | 17100 | 0.0 | - |
8.8402 | 17150 | 0.0 | - |
8.8660 | 17200 | 0.0 | - |
8.8918 | 17250 | 0.0 | - |
8.9175 | 17300 | 0.0 | - |
8.9433 | 17350 | 0.0 | - |
8.9691 | 17400 | 0.0 | - |
8.9948 | 17450 | 0.0 | - |
9.0206 | 17500 | 0.0 | - |
9.0464 | 17550 | 0.0 | - |
9.0722 | 17600 | 0.0 | - |
9.0979 | 17650 | 0.0 | - |
9.1237 | 17700 | 0.0 | - |
9.1495 | 17750 | 0.0 | - |
9.1753 | 17800 | 0.0 | - |
9.2010 | 17850 | 0.0 | - |
9.2268 | 17900 | 0.0 | - |
9.2526 | 17950 | 0.0 | - |
9.2784 | 18000 | 0.0004 | - |
9.3041 | 18050 | 0.0 | - |
9.3299 | 18100 | 0.0013 | - |
9.3557 | 18150 | 0.0 | - |
9.3814 | 18200 | 0.0 | - |
9.4072 | 18250 | 0.0001 | - |
9.4330 | 18300 | 0.0 | - |
9.4588 | 18350 | 0.0 | - |
9.4845 | 18400 | 0.0 | - |
9.5103 | 18450 | 0.0 | - |
9.5361 | 18500 | 0.0 | - |
9.5619 | 18550 | 0.0 | - |
9.5876 | 18600 | 0.0 | - |
9.6134 | 18650 | 0.0 | - |
9.6392 | 18700 | 0.0 | - |
9.6649 | 18750 | 0.0 | - |
9.6907 | 18800 | 0.0 | - |
9.7165 | 18850 | 0.0 | - |
9.7423 | 18900 | 0.0 | - |
9.7680 | 18950 | 0.0002 | - |
9.7938 | 19000 | 0.0002 | - |
9.8196 | 19050 | 0.0 | - |
9.8454 | 19100 | 0.0 | - |
9.8711 | 19150 | 0.0 | - |
9.8969 | 19200 | 0.0 | - |
9.9227 | 19250 | 0.0 | - |
9.9485 | 19300 | 0.0003 | - |
9.9742 | 19350 | 0.0 | - |
10.0 | 19400 | 0.0 | - |
10.0258 | 19450 | 0.0 | - |
10.0515 | 19500 | 0.0 | - |
10.0773 | 19550 | 0.0 | - |
10.1031 | 19600 | 0.0 | - |
10.1289 | 19650 | 0.0 | - |
10.1546 | 19700 | 0.0 | - |
10.1804 | 19750 | 0.0 | - |
10.2062 | 19800 | 0.0 | - |
10.2320 | 19850 | 0.0 | - |
10.2577 | 19900 | 0.0 | - |
10.2835 | 19950 | 0.0001 | - |
10.3093 | 20000 | 0.0012 | - |
10.3351 | 20050 | 0.0 | - |
10.3608 | 20100 | 0.0 | - |
10.3866 | 20150 | 0.0001 | - |
10.4124 | 20200 | 0.0 | - |
10.4381 | 20250 | 0.0 | - |
10.4639 | 20300 | 0.0 | - |
10.4897 | 20350 | 0.0 | - |
10.5155 | 20400 | 0.0 | - |
10.5412 | 20450 | 0.0001 | - |
10.5670 | 20500 | 0.0 | - |
10.5928 | 20550 | 0.0 | - |
10.6186 | 20600 | 0.0 | - |
10.6443 | 20650 | 0.0 | - |
10.6701 | 20700 | 0.0 | - |
10.6959 | 20750 | 0.0 | - |
10.7216 | 20800 | 0.0 | - |
10.7474 | 20850 | 0.0 | - |
10.7732 | 20900 | 0.0 | - |
10.7990 | 20950 | 0.0 | - |
10.8247 | 21000 | 0.0 | - |
10.8505 | 21050 | 0.0001 | - |
10.8763 | 21100 | 0.0 | - |
10.9021 | 21150 | 0.0 | - |
10.9278 | 21200 | 0.0 | - |
10.9536 | 21250 | 0.0 | - |
10.9794 | 21300 | 0.0 | - |
11.0052 | 21350 | 0.0 | - |
11.0309 | 21400 | 0.0 | - |
11.0567 | 21450 | 0.0 | - |
11.0825 | 21500 | 0.0 | - |
11.1082 | 21550 | 0.0 | - |
11.1340 | 21600 | 0.0 | - |
11.1598 | 21650 | 0.0 | - |
11.1856 | 21700 | 0.0 | - |
11.2113 | 21750 | 0.0 | - |
11.2371 | 21800 | 0.0003 | - |
11.2629 | 21850 | 0.0 | - |
11.2887 | 21900 | 0.0 | - |
11.3144 | 21950 | 0.0 | - |
11.3402 | 22000 | 0.0 | - |
11.3660 | 22050 | 0.0 | - |
11.3918 | 22100 | 0.0 | - |
11.4175 | 22150 | 0.0 | - |
11.4433 | 22200 | 0.0 | - |
11.4691 | 22250 | 0.0 | - |
11.4948 | 22300 | 0.0 | - |
11.5206 | 22350 | 0.0 | - |
11.5464 | 22400 | 0.0 | - |
11.5722 | 22450 | 0.0 | - |
11.5979 | 22500 | 0.0 | - |
11.6237 | 22550 | 0.0 | - |
11.6495 | 22600 | 0.0001 | - |
11.6753 | 22650 | 0.0 | - |
11.7010 | 22700 | 0.0 | - |
11.7268 | 22750 | 0.0 | - |
11.7526 | 22800 | 0.0 | - |
11.7784 | 22850 | 0.0 | - |
11.8041 | 22900 | 0.0 | - |
11.8299 | 22950 | 0.0 | - |
11.8557 | 23000 | 0.0 | - |
11.8814 | 23050 | 0.0 | - |
11.9072 | 23100 | 0.0 | - |
11.9330 | 23150 | 0.0 | - |
11.9588 | 23200 | 0.0 | - |
11.9845 | 23250 | 0.0 | - |
12.0103 | 23300 | 0.003 | - |
12.0361 | 23350 | 0.0 | - |
12.0619 | 23400 | 0.0 | - |
12.0876 | 23450 | 0.0001 | - |
12.1134 | 23500 | 0.0 | - |
12.1392 | 23550 | 0.0 | - |
12.1649 | 23600 | 0.0 | - |
12.1907 | 23650 | 0.0 | - |
12.2165 | 23700 | 0.0 | - |
12.2423 | 23750 | 0.0 | - |
12.2680 | 23800 | 0.0 | - |
12.2938 | 23850 | 0.0 | - |
12.3196 | 23900 | 0.0001 | - |
12.3454 | 23950 | 0.0 | - |
12.3711 | 24000 | 0.0 | - |
12.3969 | 24050 | 0.0 | - |
12.4227 | 24100 | 0.0 | - |
12.4485 | 24150 | 0.0 | - |
12.4742 | 24200 | 0.0 | - |
12.5 | 24250 | 0.0 | - |
12.5258 | 24300 | 0.0 | - |
12.5515 | 24350 | 0.0 | - |
12.5773 | 24400 | 0.0 | - |
12.6031 | 24450 | 0.0 | - |
12.6289 | 24500 | 0.0 | - |
12.6546 | 24550 | 0.0 | - |
12.6804 | 24600 | 0.0 | - |
12.7062 | 24650 | 0.0 | - |
12.7320 | 24700 | 0.0 | - |
12.7577 | 24750 | 0.0 | - |
12.7835 | 24800 | 0.0 | - |
12.8093 | 24850 | 0.0 | - |
12.8351 | 24900 | 0.0 | - |
12.8608 | 24950 | 0.0 | - |
12.8866 | 25000 | 0.0 | - |
12.9124 | 25050 | 0.0 | - |
12.9381 | 25100 | 0.0 | - |
12.9639 | 25150 | 0.0 | - |
12.9897 | 25200 | 0.0 | - |
13.0155 | 25250 | 0.0 | - |
13.0412 | 25300 | 0.0 | - |
13.0670 | 25350 | 0.0019 | - |
13.0928 | 25400 | 0.0 | - |
13.1186 | 25450 | 0.0 | - |
13.1443 | 25500 | 0.0 | - |
13.1701 | 25550 | 0.0 | - |
13.1959 | 25600 | 0.0 | - |
13.2216 | 25650 | 0.0 | - |
13.2474 | 25700 | 0.0001 | - |
13.2732 | 25750 | 0.0 | - |
13.2990 | 25800 | 0.0 | - |
13.3247 | 25850 | 0.0 | - |
13.3505 | 25900 | 0.0 | - |
13.3763 | 25950 | 0.0 | - |
13.4021 | 26000 | 0.0 | - |
13.4278 | 26050 | 0.0 | - |
13.4536 | 26100 | 0.0 | - |
13.4794 | 26150 | 0.0 | - |
13.5052 | 26200 | 0.0 | - |
13.5309 | 26250 | 0.0 | - |
13.5567 | 26300 | 0.0 | - |
13.5825 | 26350 | 0.0 | - |
13.6082 | 26400 | 0.0 | - |
13.6340 | 26450 | 0.0 | - |
13.6598 | 26500 | 0.0 | - |
13.6856 | 26550 | 0.0 | - |
13.7113 | 26600 | 0.0 | - |
13.7371 | 26650 | 0.0 | - |
13.7629 | 26700 | 0.0 | - |
13.7887 | 26750 | 0.0 | - |
13.8144 | 26800 | 0.0 | - |
13.8402 | 26850 | 0.0 | - |
13.8660 | 26900 | 0.0 | - |
13.8918 | 26950 | 0.0 | - |
13.9175 | 27000 | 0.0 | - |
13.9433 | 27050 | 0.0 | - |
13.9691 | 27100 | 0.0 | - |
13.9948 | 27150 | 0.0 | - |
14.0206 | 27200 | 0.0 | - |
14.0464 | 27250 | 0.0 | - |
14.0722 | 27300 | 0.0 | - |
14.0979 | 27350 | 0.0 | - |
14.1237 | 27400 | 0.0 | - |
14.1495 | 27450 | 0.0 | - |
14.1753 | 27500 | 0.0002 | - |
14.2010 | 27550 | 0.0 | - |
14.2268 | 27600 | 0.0 | - |
14.2526 | 27650 | 0.0 | - |
14.2784 | 27700 | 0.0 | - |
14.3041 | 27750 | 0.0 | - |
14.3299 | 27800 | 0.0004 | - |
14.3557 | 27850 | 0.0 | - |
14.3814 | 27900 | 0.0 | - |
14.4072 | 27950 | 0.0 | - |
14.4330 | 28000 | 0.0 | - |
14.4588 | 28050 | 0.0 | - |
14.4845 | 28100 | 0.0 | - |
14.5103 | 28150 | 0.0 | - |
14.5361 | 28200 | 0.0 | - |
14.5619 | 28250 | 0.0 | - |
14.5876 | 28300 | 0.0 | - |
14.6134 | 28350 | 0.0 | - |
14.6392 | 28400 | 0.0 | - |
14.6649 | 28450 | 0.0 | - |
14.6907 | 28500 | 0.0 | - |
14.7165 | 28550 | 0.0 | - |
14.7423 | 28600 | 0.0 | - |
14.7680 | 28650 | 0.0 | - |
14.7938 | 28700 | 0.0 | - |
14.8196 | 28750 | 0.0 | - |
14.8454 | 28800 | 0.0 | - |
14.8711 | 28850 | 0.0 | - |
14.8969 | 28900 | 0.0 | - |
14.9227 | 28950 | 0.0 | - |
14.9485 | 29000 | 0.0 | - |
14.9742 | 29050 | 0.0 | - |
15.0 | 29100 | 0.0 | - |
15.0258 | 29150 | 0.0 | - |
15.0515 | 29200 | 0.003 | - |
15.0773 | 29250 | 0.0 | - |
15.1031 | 29300 | 0.0 | - |
15.1289 | 29350 | 0.0 | - |
15.1546 | 29400 | 0.0 | - |
15.1804 | 29450 | 0.0 | - |
15.2062 | 29500 | 0.0 | - |
15.2320 | 29550 | 0.0 | - |
15.2577 | 29600 | 0.0 | - |
15.2835 | 29650 | 0.0 | - |
15.3093 | 29700 | 0.0 | - |
15.3351 | 29750 | 0.0 | - |
15.3608 | 29800 | 0.0 | - |
15.3866 | 29850 | 0.0 | - |
15.4124 | 29900 | 0.0 | - |
15.4381 | 29950 | 0.0 | - |
15.4639 | 30000 | 0.0 | - |
15.4897 | 30050 | 0.0 | - |
15.5155 | 30100 | 0.0 | - |
15.5412 | 30150 | 0.0 | - |
15.5670 | 30200 | 0.0 | - |
15.5928 | 30250 | 0.0 | - |
15.6186 | 30300 | 0.0 | - |
15.6443 | 30350 | 0.0 | - |
15.6701 | 30400 | 0.0 | - |
15.6959 | 30450 | 0.0 | - |
15.7216 | 30500 | 0.0 | - |
15.7474 | 30550 | 0.0 | - |
15.7732 | 30600 | 0.0 | - |
15.7990 | 30650 | 0.0 | - |
15.8247 | 30700 | 0.0 | - |
15.8505 | 30750 | 0.0 | - |
15.8763 | 30800 | 0.0 | - |
15.9021 | 30850 | 0.0 | - |
15.9278 | 30900 | 0.0 | - |
15.9536 | 30950 | 0.0 | - |
15.9794 | 31000 | 0.0 | - |
16.0052 | 31050 | 0.0 | - |
16.0309 | 31100 | 0.0 | - |
16.0567 | 31150 | 0.0 | - |
16.0825 | 31200 | 0.0 | - |
16.1082 | 31250 | 0.0 | - |
16.1340 | 31300 | 0.0 | - |
16.1598 | 31350 | 0.0 | - |
16.1856 | 31400 | 0.0 | - |
16.2113 | 31450 | 0.0 | - |
16.2371 | 31500 | 0.0 | - |
16.2629 | 31550 | 0.0 | - |
16.2887 | 31600 | 0.0 | - |
16.3144 | 31650 | 0.0 | - |
16.3402 | 31700 | 0.0 | - |
16.3660 | 31750 | 0.0 | - |
16.3918 | 31800 | 0.0 | - |
16.4175 | 31850 | 0.0 | - |
16.4433 | 31900 | 0.0 | - |
16.4691 | 31950 | 0.0 | - |
16.4948 | 32000 | 0.0 | - |
16.5206 | 32050 | 0.0 | - |
16.5464 | 32100 | 0.0 | - |
16.5722 | 32150 | 0.0 | - |
16.5979 | 32200 | 0.0 | - |
16.6237 | 32250 | 0.0 | - |
16.6495 | 32300 | 0.0 | - |
16.6753 | 32350 | 0.0 | - |
16.7010 | 32400 | 0.0 | - |
16.7268 | 32450 | 0.0 | - |
16.7526 | 32500 | 0.0 | - |
16.7784 | 32550 | 0.0 | - |
16.8041 | 32600 | 0.0 | - |
16.8299 | 32650 | 0.0 | - |
16.8557 | 32700 | 0.0 | - |
16.8814 | 32750 | 0.0 | - |
16.9072 | 32800 | 0.0 | - |
16.9330 | 32850 | 0.0 | - |
16.9588 | 32900 | 0.0 | - |
16.9845 | 32950 | 0.0 | - |
17.0103 | 33000 | 0.0 | - |
17.0361 | 33050 | 0.0 | - |
17.0619 | 33100 | 0.0 | - |
17.0876 | 33150 | 0.0 | - |
17.1134 | 33200 | 0.0 | - |
17.1392 | 33250 | 0.0 | - |
17.1649 | 33300 | 0.0 | - |
17.1907 | 33350 | 0.0 | - |
17.2165 | 33400 | 0.0 | - |
17.2423 | 33450 | 0.0 | - |
17.2680 | 33500 | 0.0 | - |
17.2938 | 33550 | 0.0 | - |
17.3196 | 33600 | 0.0 | - |
17.3454 | 33650 | 0.0 | - |
17.3711 | 33700 | 0.0 | - |
17.3969 | 33750 | 0.0 | - |
17.4227 | 33800 | 0.0 | - |
17.4485 | 33850 | 0.0 | - |
17.4742 | 33900 | 0.0 | - |
17.5 | 33950 | 0.0 | - |
17.5258 | 34000 | 0.0 | - |
17.5515 | 34050 | 0.0 | - |
17.5773 | 34100 | 0.0 | - |
17.6031 | 34150 | 0.0 | - |
17.6289 | 34200 | 0.0 | - |
17.6546 | 34250 | 0.0 | - |
17.6804 | 34300 | 0.0 | - |
17.7062 | 34350 | 0.0 | - |
17.7320 | 34400 | 0.0 | - |
17.7577 | 34450 | 0.0 | - |
17.7835 | 34500 | 0.0 | - |
17.8093 | 34550 | 0.0 | - |
17.8351 | 34600 | 0.0 | - |
17.8608 | 34650 | 0.0 | - |
17.8866 | 34700 | 0.0 | - |
17.9124 | 34750 | 0.0 | - |
17.9381 | 34800 | 0.0 | - |
17.9639 | 34850 | 0.0 | - |
17.9897 | 34900 | 0.0 | - |
18.0155 | 34950 | 0.0 | - |
18.0412 | 35000 | 0.0 | - |
18.0670 | 35050 | 0.0 | - |
18.0928 | 35100 | 0.0 | - |
18.1186 | 35150 | 0.0 | - |
18.1443 | 35200 | 0.0 | - |
18.1701 | 35250 | 0.0 | - |
18.1959 | 35300 | 0.0 | - |
18.2216 | 35350 | 0.0 | - |
18.2474 | 35400 | 0.0 | - |
18.2732 | 35450 | 0.0 | - |
18.2990 | 35500 | 0.0 | - |
18.3247 | 35550 | 0.0 | - |
18.3505 | 35600 | 0.0 | - |
18.3763 | 35650 | 0.0 | - |
18.4021 | 35700 | 0.0 | - |
18.4278 | 35750 | 0.0 | - |
18.4536 | 35800 | 0.0 | - |
18.4794 | 35850 | 0.0 | - |
18.5052 | 35900 | 0.0 | - |
18.5309 | 35950 | 0.0 | - |
18.5567 | 36000 | 0.0 | - |
18.5825 | 36050 | 0.0 | - |
18.6082 | 36100 | 0.0 | - |
18.6340 | 36150 | 0.0 | - |
18.6598 | 36200 | 0.0 | - |
18.6856 | 36250 | 0.0 | - |
18.7113 | 36300 | 0.0 | - |
18.7371 | 36350 | 0.0 | - |
18.7629 | 36400 | 0.0 | - |
18.7887 | 36450 | 0.0 | - |
18.8144 | 36500 | 0.0 | - |
18.8402 | 36550 | 0.0 | - |
18.8660 | 36600 | 0.0 | - |
18.8918 | 36650 | 0.0 | - |
18.9175 | 36700 | 0.0 | - |
18.9433 | 36750 | 0.0 | - |
18.9691 | 36800 | 0.0 | - |
18.9948 | 36850 | 0.0 | - |
19.0206 | 36900 | 0.0 | - |
19.0464 | 36950 | 0.0 | - |
19.0722 | 37000 | 0.0 | - |
19.0979 | 37050 | 0.0 | - |
19.1237 | 37100 | 0.0 | - |
19.1495 | 37150 | 0.0 | - |
19.1753 | 37200 | 0.0 | - |
19.2010 | 37250 | 0.0 | - |
19.2268 | 37300 | 0.0 | - |
19.2526 | 37350 | 0.0 | - |
19.2784 | 37400 | 0.0 | - |
19.3041 | 37450 | 0.0 | - |
19.3299 | 37500 | 0.0 | - |
19.3557 | 37550 | 0.0 | - |
19.3814 | 37600 | 0.0 | - |
19.4072 | 37650 | 0.0 | - |
19.4330 | 37700 | 0.0 | - |
19.4588 | 37750 | 0.0 | - |
19.4845 | 37800 | 0.0 | - |
19.5103 | 37850 | 0.0 | - |
19.5361 | 37900 | 0.0 | - |
19.5619 | 37950 | 0.0 | - |
19.5876 | 38000 | 0.0 | - |
19.6134 | 38050 | 0.0 | - |
19.6392 | 38100 | 0.0 | - |
19.6649 | 38150 | 0.0 | - |
19.6907 | 38200 | 0.0 | - |
19.7165 | 38250 | 0.0 | - |
19.7423 | 38300 | 0.0 | - |
19.7680 | 38350 | 0.0 | - |
19.7938 | 38400 | 0.0 | - |
19.8196 | 38450 | 0.0 | - |
19.8454 | 38500 | 0.0 | - |
19.8711 | 38550 | 0.0 | - |
19.8969 | 38600 | 0.0 | - |
19.9227 | 38650 | 0.0 | - |
19.9485 | 38700 | 0.0 | - |
19.9742 | 38750 | 0.0 | - |
20.0 | 38800 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 1,110
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for mini1013/master_item_el
Base model
klue/roberta-base