|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: finetune-newwiki-summarization-ver2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# finetune-newwiki-summarization-ver2 |
|
|
|
This model is a fine-tuned version of [minnehwg/finetune-newwiki-summarization-ver1](https://huggingface.co/minnehwg/finetune-newwiki-summarization-ver1) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4697 |
|
- Rouge1: 48.1659 |
|
- Rouge2: 25.1491 |
|
- Rougel: 34.7794 |
|
- Rougelsum: 37.0893 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 7 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 0.4912 | 1.0 | 990 | 0.4701 | 48.1754 | 25.0221 | 34.7613 | 37.0734 | |
|
| 0.4748 | 2.0 | 1980 | 0.4694 | 48.3629 | 25.3649 | 35.0239 | 37.3084 | |
|
| 0.4755 | 3.0 | 2970 | 0.4695 | 48.2770 | 25.1907 | 34.8456 | 37.1930 | |
|
| 0.4703 | 4.0 | 3960 | 0.4696 | 48.1801 | 25.1769 | 34.8004 | 37.0817 | |
|
| 0.468 | 5.0 | 4950 | 0.4697 | 48.1659 | 25.1491 | 34.7794 | 37.0893 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|