|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: reviews_sum |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# reviews_sum |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an [reviews](mirfan899/movies_reviews_summaries) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.0004 |
|
- Rouge1: 0.0606 |
|
- Rouge2: 0.0075 |
|
- Rougel: 0.0615 |
|
- Rougelsum: 0.0611 |
|
- Gen Len: 19.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| No log | 1.0 | 395 | 2.2625 | 0.0346 | 0.0069 | 0.035 | 0.0352 | 18.9778 | |
|
| 3.319 | 2.0 | 790 | 2.1100 | 0.0419 | 0.0093 | 0.0428 | 0.0426 | 19.0 | |
|
| 2.2853 | 3.0 | 1185 | 2.0675 | 0.047 | 0.0061 | 0.0483 | 0.0481 | 19.0 | |
|
| 2.0122 | 4.0 | 1580 | 2.0005 | 0.0584 | 0.0095 | 0.0601 | 0.0599 | 19.0 | |
|
| 2.0122 | 5.0 | 1975 | 2.0004 | 0.0606 | 0.0075 | 0.0615 | 0.0611 | 19.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|