MistralTokenizer with HuggingFacePipeline.from_model_id
#47
by
jsemrau
- opened
I am initiating my 0.3 Instruct connecting with langchain and notized that it uses by default a LlamaTokenizer. I would assume that the performance of MistralTokenizer is better compared to LlamaTokenizer, but I have no idea how to combine these two.
This is my basic statement:
llm = HuggingFacePipeline.from_model_id(
model_id=checkpoint,
task="text-generation",
device=None,
pipeline_kwargs={
"max_new_tokens": 2048, # changed from 2048
"top_p": 0.15, # changed from 0.15
"do_sample": True, # changed from true
"torch_dtype": torch.float64, # bfloat16
"use_fast": True,
},
model_kwargs=model_kwargs
)
When I add the tokenizer to the pipeline_kwarks ("tokenizer":tokenizer,)
I get "TypeError: transformers.pipelines.pipeline() got multiple values for keyword argument 'tokenizer'"
When I add it to the from_modelid() as tokenizer=tokenizer,
then the app crashes with pydantic.v1.error_wrappers.ValidationError: 1 validation error for HuggingFacePipeline tokenizer extra fields not permitted (type=value_error.extra)
Any ideas how to fix this?