All parameters finetune,OOM
I use 8*a100 finetune mistral-7b model,with deepspeed3
When I use about 5k data to trian model,It works. However,when I add more data in above config(about 1.7w),it reports OOM.
I don't change the batchsize,lr or anything.Why it reports OOM
Please help!
maybe show yout code?
maybe show yout code?
from llmtuner.tuner import get_train_args, run_pt, run_sft, run_rm, run_ppo
def main():
from huggingface_hub import login
login(token ="xxxxxxxxx")
model_args, data_args, training_args, finetuning_args, general_args = get_train_args()
if general_args.stage == "pt":
run_pt(model_args, data_args, training_args, finetuning_args)
elif general_args.stage == "sft":
run_sft(model_args, data_args, training_args, finetuning_args)
elif general_args.stage == "rm":
run_rm(model_args, data_args, training_args, finetuning_args)
elif general_args.stage == "ppo":
run_ppo(model_args, data_args, training_args, finetuning_args)
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
Inspired by: https://github.com/huggingface/transformers/blob/v4.29.2/examples/pytorch/summarization/run_summarization.py
from typing import Optional, List
from transformers import Seq2SeqTrainingArguments, DataCollatorForSeq2Seq, TrainerCallback
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock
import deepspeed
from llmtuner.dsets import get_dataset, preprocess_dataset, split_dataset
from llmtuner.extras.callbacks import LogCallback
from llmtuner.extras.constants import IGNORE_INDEX
from llmtuner.extras.misc import get_logits_processor
from llmtuner.extras.ploting import plot_loss
from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments
from llmtuner.tuner.core import load_model_and_tokenizer
from llmtuner.tuner.sft.metric import ComputeMetrics
from llmtuner.tuner.sft.trainer import Seq2SeqPeftTrainer
def run_sft(
model_args: ModelArguments,
data_args: DataArguments,
training_args: Seq2SeqTrainingArguments,
finetuning_args: FinetuningArguments,
callbacks: Optional[List[TrainerCallback]] = [LogCallback()]
):
from huggingface_hub import login
login(token ="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")
dataset = get_dataset(model_args, data_args)
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train, stage="sft")
#deepspeed.utils.set_z3_leaf_modules(model, [MixtralSparseMoeBlock])
dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="sft")
data_collator = DataCollatorForSeq2Seq(
tokenizer=tokenizer,
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
)
# Override the decoding parameters of Seq2SeqTrainer
training_args.generation_max_length = training_args.generation_max_length if \
training_args.generation_max_length is not None else data_args.max_target_length
training_args.generation_num_beams = data_args.eval_num_beams if \
data_args.eval_num_beams is not None else training_args.generation_num_beams
# Initialize our Trainer
trainer = Seq2SeqPeftTrainer(
finetuning_args=finetuning_args,
model=model,
args=training_args,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=callbacks,
compute_metrics=ComputeMetrics(tokenizer) if training_args.predict_with_generate else None,
**split_dataset(dataset, data_args.dev_ratio, training_args.do_train)
)
# Keyword arguments for `model.generate`
gen_kwargs = {
"do_sample": True,
"top_p": 0.7,
"max_new_tokens": data_args.max_target_length + 1,
"temperature": 0.3,
"logits_processor": get_logits_processor()
}
# Training
if training_args.do_train:
train_result = trainer.train()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
trainer.save_model()
if trainer.is_world_process_zero() and model_args.plot_loss:
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
# Evaluation
if training_args.do_eval:
metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs)
if training_args.predict_with_generate: # eval_loss will be wrong if predict_with_generate is enabled
metrics.pop("eval_loss", None)
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Predict
if training_args.do_predict:
predict_results = trainer.predict(dataset, metric_key_prefix="predict", **gen_kwargs)
if training_args.predict_with_generate: # predict_loss will be wrong if predict_with_generate is enabled
predict_results.metrics.pop("predict_loss", None)
trainer.log_metrics("predict", predict_results.metrics)
trainer.save_metrics("predict", predict_results.metrics)
trainer.save_predictions(predict_results)
if name == "main":
main()