Edit model card

You need to agree to share your contact information to access this model

Mistral AI processes your personal data below to provide the model and enforce its license. If you are affiliated with a commercial entity, we may also send you communications about our models. For more information on your rights and data handling, please see our privacy policy.

Mistral AI Research License

If You want to use a Mistral Model, a Derivative or an Output for any purpose that is not expressly authorized under this Agreement, You must request a license from Mistral AI, which Mistral AI may grant to You in Mistral AI's sole discretion. To discuss such a license, please contact Mistral AI via the website contact form: https://mistral.ai/contact/

1. Scope and acceptance

1.1. Scope of the Agreement. This Agreement applies to any use, modification, or Distribution of any Mistral Model by You, regardless of the source You obtained a copy of such Mistral Model.
1.2. Acceptance. By accessing, using, modifying, Distributing a Mistral Model, or by creating, using or distributing a Derivative of the Mistral Model, You agree to be bound by this Agreement.
1.3. Acceptance on behalf of a third-party. If You accept this Agreement on behalf of Your employer or another person or entity, You warrant and represent that You have the authority to act and accept this Agreement on their behalf. In such a case, the word "You" in this Agreement will refer to Your employer or such other person or entity.

2. License

2.1. Grant of rights. Subject to Section 3 below, Mistral AI hereby grants You a non-exclusive, royalty-free, worldwide, non-sublicensable, non-transferable, limited license to use, copy, modify, and Distribute under the conditions provided in Section 2.2 below, the Mistral Model and any Derivatives made by or for Mistral AI and to create Derivatives of the Mistral Model.
2.2. Distribution of Mistral Model and Derivatives made by or for Mistral AI. Subject to Section 3 below, You may Distribute copies of the Mistral Model and/or Derivatives made by or for Mistral AI, under the following conditions: You must make available a copy of this Agreement to third-party recipients of the Mistral Models and/or Derivatives made by or for Mistral AI you Distribute, it being specified that any rights to use the Mistral Models and/or Derivatives made by or for Mistral AI shall be directly granted by Mistral AI to said third-party recipients pursuant to the Mistral AI Research License agreement executed between these parties; You must retain in all copies of the Mistral Models the following attribution notice within a "Notice" text file distributed as part of such copies: "Licensed by Mistral AI under the Mistral AI Research License".
2.3. Distribution of Derivatives made by or for You. Subject to Section 3 below, You may Distribute any Derivatives made by or for You under additional or different terms and conditions, provided that: In any event, the use and modification of Mistral Model and/or Derivatives made by or for Mistral AI shall remain governed by the terms and conditions of this Agreement; You include in any such Derivatives made by or for You prominent notices stating that You modified the concerned Mistral Model; and Any terms and conditions You impose on any third-party recipients relating to Derivatives made by or for You shall neither limit such third-party recipients' use of the Mistral Model or any Derivatives made by or for Mistral AI in accordance with the Mistral AI Research License nor conflict with any of its terms and conditions.

3. Limitations

3.1. Misrepresentation. You must not misrepresent or imply, through any means, that the Derivatives made by or for You and/or any modified version of the Mistral Model You Distribute under your name and responsibility is an official product of Mistral AI or has been endorsed, approved or validated by Mistral AI, unless You are authorized by Us to do so in writing.
3.2. Usage Limitation. You shall only use the Mistral Models, Derivatives (whether or not created by Mistral AI) and Outputs for Research Purposes.

4. Intellectual Property

4.1. Trademarks. No trademark licenses are granted under this Agreement, and in connection with the Mistral Models, You may not use any name or mark owned by or associated with Mistral AI or any of its affiliates, except (i) as required for reasonable and customary use in describing and Distributing the Mistral Models and Derivatives made by or for Mistral AI and (ii) for attribution purposes as required by this Agreement.
4.2. Outputs. We claim no ownership rights in and to the Outputs. You are solely responsible for the Outputs You generate and their subsequent uses in accordance with this Agreement. Any Outputs shall be subject to the restrictions set out in Section 3 of this Agreement.
4.3. Derivatives. By entering into this Agreement, You accept that any Derivatives that You may create or that may be created for You shall be subject to the restrictions set out in Section 3 of this Agreement.

5. Liability

5.1. Limitation of liability. In no event, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall Mistral AI be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this Agreement or out of the use or inability to use the Mistral Models and Derivatives (including but not limited to damages for loss of data, loss of goodwill, loss of expected profit or savings, work stoppage, computer failure or malfunction, or any damage caused by malware or security breaches), even if Mistral AI has been advised of the possibility of such damages.
5.2. Indemnification. You agree to indemnify and hold harmless Mistral AI from and against any claims, damages, or losses arising out of or related to Your use or Distribution of the Mistral Models and Derivatives.

6. Warranty

6.1. Disclaimer. Unless required by applicable law or prior agreed to by Mistral AI in writing, Mistral AI provides the Mistral Models and Derivatives on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. Mistral AI does not represent nor warrant that the Mistral Models and Derivatives will be error-free, meet Your or any third party's requirements, be secure or will allow You or any third party to achieve any kind of result or generate any kind of content. You are solely responsible for determining the appropriateness of using or Distributing the Mistral Models and Derivatives and assume any risks associated with Your exercise of rights under this Agreement.

7. Termination

7.1. Term. This Agreement is effective as of the date of your acceptance of this Agreement or access to the concerned Mistral Models or Derivatives and will continue until terminated in accordance with the following terms.
7.2. Termination. Mistral AI may terminate this Agreement at any time if You are in breach of this Agreement. Upon termination of this Agreement, You must cease to use all Mistral Models and Derivatives and shall permanently delete any copy thereof. The following provisions, in their relevant parts, will survive any termination or expiration of this Agreement, each for the duration necessary to achieve its own intended purpose (e.g. the liability provision will survive until the end of the applicable limitation period):Sections 5 (Liability), 6(Warranty), 7 (Termination) and 8 (General Provisions).
7.3. Litigation. If You initiate any legal action or proceedings against Us or any other entity (including a cross-claim or counterclaim in a lawsuit), alleging that the Model or a Derivative, or any part thereof, infringe upon intellectual property or other rights owned or licensable by You, then any licenses granted to You under this Agreement will immediately terminate as of the date such legal action or claim is filed or initiated.

8. General provisions

8.1. Governing laws. This Agreement will be governed by the laws of France, without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement.
8.2. Competent jurisdiction. The courts of Paris shall have exclusive jurisdiction of any dispute arising out of this Agreement.
8.3. Severability. If any provision of this Agreement is held to be invalid, illegal or unenforceable, the remaining provisions shall be unaffected thereby and remain valid as if such provision had not been set forth herein.

9. Definitions

"Agreement": means this Mistral AI Research License agreement governing the access, use, and Distribution of the Mistral Models, Derivatives and Outputs.
"Derivative": means any (i) modified version of the Mistral Model (including but not limited to any customized or fine-tuned version thereof), (ii) work based on the Mistral Model, or (iii) any other derivative work thereof.
"Distribution", "Distributing", "Distribute" or "Distributed": means supplying, providing or making available, by any means, a copy of the Mistral Models and/or the Derivatives as the case may be, subject to Section 3 of this Agreement.
"Mistral AI", "We" or "Us": means Mistral AI, a French société par actions simplifiée registered in the Paris commercial registry under the number 952 418 325, and having its registered seat at 15, rue des Halles, 75001 Paris.
"Mistral Model": means the foundational large language model(s), and its elements which include algorithms, software, instructed checkpoints, parameters, source code (inference code, evaluation code and, if applicable, fine-tuning code) and any other elements associated thereto made available by Mistral AI under this Agreement, including, if any, the technical documentation, manuals and instructions for the use and operation thereof.
"Research Purposes": means any use of a Mistral Model, Derivative, or Output that is solely for (a) personal, scientific or academic research, and (b) for non-profit and non-commercial purposes, and not directly or indirectly connected to any commercial activities or business operations. For illustration purposes, Research Purposes does not include (1) any usage of the Mistral Model, Derivative or Output by individuals or contractors employed in or engaged by companies in the context of (a) their daily tasks, or (b) any activity (including but not limited to any testing or proof-of-concept) that is intended to generate revenue, nor (2) any Distribution by a commercial entity of the Mistral Model, Derivative or Output whether in return for payment or free of charge, in any medium or form, including but not limited to through a hosted or managed service (e.g. SaaS, cloud instances, etc.), or behind a software layer.
"Outputs": means any content generated by the operation of the Mistral Models or the Derivatives from a prompt (i.e., text instructions) provided by users. For the avoidance of doubt, Outputs do not include any components of a Mistral Models, such as any fine-tuned versions of the Mistral Models, the weights, or parameters.
"You": means the individual or entity entering into this Agreement with Mistral AI.

Mistral AI processes your personal data below to provide the model and enforce its license. If you are affiliated with a commercial entity, we may also send you communications about our models. For more information on your rights and data handling, please see our privacy policy.

Log in or Sign Up to review the conditions and access this model content.

Model Card for Mistral-Large-Instruct-2407

Mistral-Large-Instruct-2407 is an advanced dense Large Language Model (LLM) of 123B parameters with state-of-the-art reasoning, knowledge and coding capabilities.

For more details about this model please refer to our release blog post.

Key features

  • Multi-lingual by design: Dozens of languages supported, including English, French, German, Spanish, Italian, Chinese, Japanese, Korean, Portuguese, Dutch and Polish.
  • Proficient in coding: Trained on 80+ coding languages such as Python, Java, C, C++, Javacsript, and Bash. Also trained on more specific languages such as Swift and Fortran.
  • Agentic-centric: Best-in-class agentic capabilities with native function calling and JSON outputting.
  • Advanced Reasoning: State-of-the-art mathematical and reasoning capabilities.
  • Mistral Research License: Allows usage and modification for research and non-commercial usages.
  • Large Context: A large 128k context window.

Metrics

Base Pretrained Benchmarks

Benchmark Score
MMLU 84.0%

Base Pretrained Multilingual Benchmarks (MMLU)

Benchmark Score
French 82.8%
German 81.6%
Spanish 82.7%
Italian 82.7%
Dutch 80.7%
Portuguese 81.6%
Russian 79.0%
Korean 60.1%
Japanese 78.8%
Chinese 74.8%

Instruction Benchmarks

Benchmark Score
MT Bench 8.63
Wild Bench 56.3
Arena Hard 73.2

Code & Reasoning Benchmarks

Benchmark Score
Human Eval 92%
Human Eval Plus 87%
MBPP Base 80%
MBPP Plus 69%

Math Benchmarks

Benchmark Score
GSM8K 93%
Math Instruct (0-shot, no CoT) 70%
Math Instruct (0-shot, CoT) 71.5%

Usage

The model can be used with two different frameworks

Mistral Inference

Install

It is recommended to use mistralai/Mistral-Large-Instruct-2407 with mistral-inference. For HF transformers code snippets, please keep scrolling.

pip install mistral_inference

Download

from huggingface_hub import snapshot_download
from pathlib import Path

mistral_models_path = Path.home().joinpath('mistral_models', 'Large')
mistral_models_path.mkdir(parents=True, exist_ok=True)

snapshot_download(repo_id="mistralai/Mistral-Large-Instruct-2407", allow_patterns=["params.json", "consolidated-*.safetensors", "tokenizer.model.v3"], local_dir=mistral_models_path)

Chat

After installing mistral_inference, a mistral-chat CLI command should be available in your environment. Given the size of this model, you will need a node with several GPUs (more than 300GB cumulated vRAM). If you have 8 GPUs on your machine, you can chat with the model using

torchrun --nproc-per-node 8 --no-python mistral-chat $HOME/mistral_models/Large --instruct --max_tokens 256 --temperature 0.7

E.g. Try out something like:

How expensive would it be to ask a window cleaner to clean all windows in Paris. Make a reasonable guess in US Dollar.

Instruct following

from mistral_inference.transformer import Transformer
from mistral_inference.generate import generate

from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest

tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3")
model = Transformer.from_folder(mistral_models_path)

prompt = "How expensive would it be to ask a window cleaner to clean all windows in Paris. Make a reasonable guess in US Dollar."

completion_request = ChatCompletionRequest(messages=[UserMessage(content=prompt)])

tokens = tokenizer.encode_chat_completion(completion_request).tokens

out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.7, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.decode(out_tokens[0])

print(result)

Function calling

from mistral_common.protocol.instruct.tool_calls import Function, Tool
from mistral_inference.transformer import Transformer
from mistral_inference.generate import generate

from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest


tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3")
model = Transformer.from_folder(mistral_models_path)

completion_request = ChatCompletionRequest(
    tools=[
        Tool(
            function=Function(
                name="get_current_weather",
                description="Get the current weather",
                parameters={
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g. San Francisco, CA",
                        },
                        "format": {
                            "type": "string",
                            "enum": ["celsius", "fahrenheit"],
                            "description": "The temperature unit to use. Infer this from the users location.",
                        },
                    },
                    "required": ["location", "format"],
                },
            )
        )
    ],
    messages=[
        UserMessage(content="What's the weather like today in Paris?"),
        ],
)

tokens = tokenizer.encode_chat_completion(completion_request).tokens

out_tokens, _ = generate([tokens], model, max_tokens=256, temperature=0.7, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.decode(out_tokens[0])

print(result)

Transformers

If you want to use Hugging Face transformers to generate text, you can do something like this.

from transformers import pipeline

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]
chatbot = pipeline("text-generation", model="mistralai/Mistral-Large-Instruct-2407")
chatbot(messages)

Function calling with transformers

To use this example, you'll need transformers version 4.42.0 or higher. Please see the function calling guide in the transformers docs for more information.

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_id = "mistralai/Mistral-Large-Instruct-2407"
tokenizer = AutoTokenizer.from_pretrained(model_id)

def get_current_weather(location: str, format: str):
    """
    Get the current weather

    Args:
        location: The city and state, e.g. San Francisco, CA
        format: The temperature unit to use. Infer this from the users location. (choices: ["celsius", "fahrenheit"])
    """
    pass

conversation = [{"role": "user", "content": "What's the weather like in Paris?"}]
tools = [get_current_weather]

# format and tokenize the tool use prompt 
inputs = tokenizer.apply_chat_template(
            conversation,
            tools=tools,
            add_generation_prompt=True,
            return_dict=True,
            return_tensors="pt",
)

model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")

inputs.to(model.device)
outputs = model.generate(**inputs, max_new_tokens=1000)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Note that, for reasons of space, this example does not show a complete cycle of calling a tool and adding the tool call and tool results to the chat history so that the model can use them in its next generation. For a full tool calling example, please see the function calling guide, and note that Mistral does use tool call IDs, so these must be included in your tool calls and tool results. They should be exactly 9 alphanumeric characters.

Limitations

The Mistral Large model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.

The Mistral AI Team

Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Alok Kothari, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Augustin Garreau, Austin Birky, Bam4d, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Carole Rambaud, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Diogo Costa, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gaspard Blanchet, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Henri Roussez, Hichem Sattouf, Ian Mack, Jean-Malo Delignon, Jessica Chudnovsky, Justus Murke, Kartik Khandelwal, Lawrence Stewart, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Marjorie Janiewicz, Mickaël Seznec, Nicolas Schuhl, Niklas Muhs, Olivier de Garrigues, Patrick von Platen, Paul Jacob, Pauline Buche, Pavan Kumar Reddy, Perry Savas, Pierre Stock, Romain Sauvestre, Sagar Vaze, Sandeep Subramanian, Saurabh Garg, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibault Schueller, Thibaut Lavril, Thomas Wang, Théophile Gervet, Timothée Lacroix, Valera Nemychnikova, Wendy Shang, William El Sayed, William Marshall

Downloads last month
17,740
Safetensors
Model size
123B params
Tensor type
BF16
·
Inference API
Inference API (serverless) has been turned off for this model.

Model tree for mistralai/Mistral-Large-Instruct-2407

Adapters
2 models
Finetunes
7 models
Merges
10 models
Quantizations
19 models

Spaces using mistralai/Mistral-Large-Instruct-2407 35