|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- timdettmers/openassistant-guanaco |
|
pipeline_tag: text-generation |
|
--- |
|
# Llama-2-13b-guanaco |
|
|
|
π [Article](https://towardsdatascience.com/fine-tune-your-own-llama-2-model-in-a-colab-notebook-df9823a04a32) | |
|
π» [Colab](https://colab.research.google.com/drive/1PEQyJO1-f6j0S_XJ8DV50NkpzasXkrzd?usp=sharing) | |
|
π [Script](https://gist.github.com/mlabonne/b5718e1b229ce6553564e3f56df72c5c) |
|
|
|
<center><img src="https://i.imgur.com/C2x7n2a.png" width="300"></center> |
|
|
|
This is a `llama-2-13b-chat-hf` model fine-tuned using QLoRA (4-bit precision) on the [`mlabonne/guanaco-llama2`](https://huggingface.co/datasets/mlabonne/guanaco-llama2) dataset. |
|
|
|
## π§ Training |
|
|
|
It was trained on a Google Colab notebook with a T4 GPU and high RAM. |
|
|
|
## π» Usage |
|
|
|
``` python |
|
# pip install transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "mlabonne/llama-2-13b-miniguanaco" |
|
prompt = "What is a large language model?" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
sequences = pipeline( |
|
f'<s>[INST] {prompt} [/INST]', |
|
do_sample=True, |
|
top_k=10, |
|
num_return_sequences=1, |
|
eos_token_id=tokenizer.eos_token_id, |
|
max_length=200, |
|
) |
|
for seq in sequences: |
|
print(f"Result: {seq['generated_text']}") |
|
``` |