llama-2-13b-guanaco / README.md
mlabonne's picture
Create README.md
321e67e
---
license: apache-2.0
datasets:
- timdettmers/openassistant-guanaco
pipeline_tag: text-generation
---
# Llama-2-13b-guanaco
πŸ“ [Article](https://towardsdatascience.com/fine-tune-your-own-llama-2-model-in-a-colab-notebook-df9823a04a32) |
πŸ’» [Colab](https://colab.research.google.com/drive/1PEQyJO1-f6j0S_XJ8DV50NkpzasXkrzd?usp=sharing) |
πŸ“„ [Script](https://gist.github.com/mlabonne/b5718e1b229ce6553564e3f56df72c5c)
<center><img src="https://i.imgur.com/C2x7n2a.png" width="300"></center>
This is a `llama-2-13b-chat-hf` model fine-tuned using QLoRA (4-bit precision) on the [`mlabonne/guanaco-llama2`](https://huggingface.co/datasets/mlabonne/guanaco-llama2) dataset.
## πŸ”§ Training
It was trained on a Google Colab notebook with a T4 GPU and high RAM.
## πŸ’» Usage
``` python
# pip install transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/llama-2-13b-miniguanaco"
prompt = "What is a large language model?"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
sequences = pipeline(
f'<s>[INST] {prompt} [/INST]',
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=200,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
```