[WIP] Upload folder using huggingface_hub (multi-commit ca1a6c23d8de68d929dc7e05e8e4b00ea2b2d9e3c27f098e2f1a7b786e527320)

#1
README.md DELETED
@@ -1,37 +0,0 @@
1
- ---
2
- license: other
3
- license_name: deepseek
4
- license_link: https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-MODEL
5
- library_name: transformers
6
- base_model: deepseek-ai/DeepSeek-V2.5-1210
7
- tags:
8
- - mlx
9
- ---
10
-
11
- # mlx-community/DeepSeek-V2.5-1210-4bit
12
-
13
- The Model [mlx-community/DeepSeek-V2.5-1210-4bit](https://huggingface.co/mlx-community/DeepSeek-V2.5-1210-4bit) was
14
- converted to MLX format from [deepseek-ai/DeepSeek-V2.5-1210](https://huggingface.co/deepseek-ai/DeepSeek-V2.5-1210)
15
- using mlx-lm version **0.20.3**.
16
-
17
- ## Use with mlx
18
-
19
- ```bash
20
- pip install mlx-lm
21
- ```
22
-
23
- ```python
24
- from mlx_lm import load, generate
25
-
26
- model, tokenizer = load("mlx-community/DeepSeek-V2.5-1210-4bit")
27
-
28
- prompt="hello"
29
-
30
- if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
31
- messages = [{"role": "user", "content": prompt}]
32
- prompt = tokenizer.apply_chat_template(
33
- messages, tokenize=False, add_generation_prompt=True
34
- )
35
-
36
- response = generate(model, tokenizer, prompt=prompt, verbose=True)
37
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json DELETED
@@ -1,68 +0,0 @@
1
- {
2
- "architectures": [
3
- "DeepseekV2ForCausalLM"
4
- ],
5
- "attention_bias": false,
6
- "attention_dropout": 0.0,
7
- "auto_map": {
8
- "AutoConfig": "configuration_deepseek.DeepseekV2Config",
9
- "AutoModel": "modeling_deepseek.DeepseekV2Model",
10
- "AutoModelForCausalLM": "modeling_deepseek.DeepseekV2ForCausalLM"
11
- },
12
- "aux_loss_alpha": 0.001,
13
- "bos_token_id": 100000,
14
- "eos_token_id": 100001,
15
- "ep_size": 1,
16
- "first_k_dense_replace": 1,
17
- "hidden_act": "silu",
18
- "hidden_size": 5120,
19
- "initializer_range": 0.02,
20
- "intermediate_size": 12288,
21
- "kv_lora_rank": 512,
22
- "max_position_embeddings": 163840,
23
- "model_type": "deepseek_v2",
24
- "moe_intermediate_size": 1536,
25
- "moe_layer_freq": 1,
26
- "n_group": 8,
27
- "n_routed_experts": 160,
28
- "n_shared_experts": 2,
29
- "norm_topk_prob": false,
30
- "num_attention_heads": 128,
31
- "num_experts_per_tok": 6,
32
- "num_hidden_layers": 60,
33
- "num_key_value_heads": 128,
34
- "pretraining_tp": 1,
35
- "q_lora_rank": 1536,
36
- "qk_nope_head_dim": 128,
37
- "qk_rope_head_dim": 64,
38
- "quantization": {
39
- "group_size": 64,
40
- "bits": 4
41
- },
42
- "quantization_config": {
43
- "group_size": 64,
44
- "bits": 4
45
- },
46
- "rms_norm_eps": 1e-06,
47
- "rope_scaling": {
48
- "beta_fast": 32,
49
- "beta_slow": 1,
50
- "factor": 40,
51
- "mscale": 1.0,
52
- "mscale_all_dim": 1.0,
53
- "original_max_position_embeddings": 4096,
54
- "type": "yarn"
55
- },
56
- "rope_theta": 10000,
57
- "routed_scaling_factor": 16.0,
58
- "scoring_func": "softmax",
59
- "seq_aux": true,
60
- "tie_word_embeddings": false,
61
- "topk_group": 3,
62
- "topk_method": "group_limited_greedy",
63
- "torch_dtype": "bfloat16",
64
- "transformers_version": "4.39.3",
65
- "use_cache": true,
66
- "v_head_dim": 128,
67
- "vocab_size": 102400
68
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configuration_deepseek.py DELETED
@@ -1,206 +0,0 @@
1
- from transformers.configuration_utils import PretrainedConfig
2
- from transformers.utils import logging
3
-
4
- logger = logging.get_logger(__name__)
5
-
6
- DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
7
- class DeepseekV2Config(PretrainedConfig):
8
- r"""
9
- This is the configuration class to store the configuration of a [`DeepseekV2Model`]. It is used to instantiate an DeepSeek
10
- model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
11
- defaults will yield a similar configuration to that of the DeepSeek-V2.
12
-
13
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
14
- documentation from [`PretrainedConfig`] for more information.
15
-
16
-
17
- Args:
18
- vocab_size (`int`, *optional*, defaults to 102400):
19
- Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
20
- `inputs_ids` passed when calling [`DeepseekV2Model`]
21
- hidden_size (`int`, *optional*, defaults to 4096):
22
- Dimension of the hidden representations.
23
- intermediate_size (`int`, *optional*, defaults to 11008):
24
- Dimension of the MLP representations.
25
- moe_intermediate_size (`int`, *optional*, defaults to 1407):
26
- Dimension of the MoE representations.
27
- num_hidden_layers (`int`, *optional*, defaults to 32):
28
- Number of hidden layers in the Transformer decoder.
29
- num_attention_heads (`int`, *optional*, defaults to 32):
30
- Number of attention heads for each attention layer in the Transformer decoder.
31
- n_shared_experts (`int`, *optional*, defaults to None):
32
- Number of shared experts, None means dense model.
33
- n_routed_experts (`int`, *optional*, defaults to None):
34
- Number of routed experts, None means dense model.
35
- routed_scaling_factor (`float`, *optional*, defaults to 1.0):
36
- Scaling factor or routed experts.
37
- topk_method (`str`, *optional*, defaults to `gready`):
38
- Topk method used in routed gate.
39
- n_group (`int`, *optional*, defaults to None):
40
- Number of groups for routed experts.
41
- topk_group (`int`, *optional*, defaults to None):
42
- Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
43
- num_experts_per_tok (`int`, *optional*, defaults to None):
44
- Number of selected experts, None means dense model.
45
- moe_layer_freq (`int`, *optional*, defaults to 1):
46
- The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
47
- first_k_dense_replace (`int`, *optional*, defaults to 0):
48
- Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
49
- \--k dense layers--/
50
- norm_topk_prob (`bool`, *optional*, defaults to False):
51
- Whether to normalize the weights of the routed experts.
52
- scoring_func (`str`, *optional*, defaults to 'softmax'):
53
- Method of computing expert weights.
54
- aux_loss_alpha (`float`, *optional*, defaults to 0.001):
55
- Auxiliary loss weight coefficient.
56
- seq_aux = (`bool`, *optional*, defaults to True):
57
- Whether to compute the auxiliary loss for each individual sample.
58
- num_key_value_heads (`int`, *optional*):
59
- This is the number of key_value heads that should be used to implement Grouped Query Attention. If
60
- `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
61
- `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
62
- converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
63
- by meanpooling all the original heads within that group. For more details checkout [this
64
- paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
65
- `num_attention_heads`.
66
- hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
67
- The non-linear activation function (function or string) in the decoder.
68
- max_position_embeddings (`int`, *optional*, defaults to 2048):
69
- The maximum sequence length that this model might ever be used with.
70
- initializer_range (`float`, *optional*, defaults to 0.02):
71
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
72
- rms_norm_eps (`float`, *optional*, defaults to 1e-06):
73
- The epsilon used by the rms normalization layers.
74
- use_cache (`bool`, *optional*, defaults to `True`):
75
- Whether or not the model should return the last key/values attentions (not used by all models). Only
76
- relevant if `config.is_decoder=True`.
77
- pad_token_id (`int`, *optional*):
78
- Padding token id.
79
- bos_token_id (`int`, *optional*, defaults to 1):
80
- Beginning of stream token id.
81
- eos_token_id (`int`, *optional*, defaults to 2):
82
- End of stream token id.
83
- pretraining_tp (`int`, *optional*, defaults to 1):
84
- Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
85
- document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
86
- necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
87
- issue](https://github.com/pytorch/pytorch/issues/76232).
88
- tie_word_embeddings (`bool`, *optional*, defaults to `False`):
89
- Whether to tie weight embeddings
90
- rope_theta (`float`, *optional*, defaults to 10000.0):
91
- The base period of the RoPE embeddings.
92
- rope_scaling (`Dict`, *optional*):
93
- Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
94
- strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
95
- `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
96
- `max_position_embeddings` to the expected new maximum.
97
- attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
98
- Whether to use a bias in the query, key, value and output projection layers during self-attention.
99
- attention_dropout (`float`, *optional*, defaults to 0.0):
100
- The dropout ratio for the attention probabilities.
101
-
102
- ```python
103
- >>> from transformers import DeepseekV2Model, DeepseekV2Config
104
-
105
- >>> # Initializing a Deepseek-V2 style configuration
106
- >>> configuration = DeepseekV2Config()
107
-
108
- >>> # Accessing the model configuration
109
- >>> configuration = model.config
110
- ```"""
111
-
112
- model_type = "deepseek_v2"
113
- keys_to_ignore_at_inference = ["past_key_values"]
114
-
115
- def __init__(
116
- self,
117
- vocab_size=102400,
118
- hidden_size=4096,
119
- intermediate_size=11008,
120
- moe_intermediate_size = 1407,
121
- num_hidden_layers=30,
122
- num_attention_heads=32,
123
- num_key_value_heads=32,
124
- n_shared_experts = None,
125
- n_routed_experts = None,
126
- ep_size = 1,
127
- routed_scaling_factor = 1.0,
128
- kv_lora_rank = 512,
129
- q_lora_rank = 1536,
130
- qk_rope_head_dim = 64,
131
- v_head_dim = 128,
132
- qk_nope_head_dim = 128,
133
- topk_method = 'gready',
134
- n_group = None,
135
- topk_group = None,
136
- num_experts_per_tok = None,
137
- moe_layer_freq = 1,
138
- first_k_dense_replace = 0,
139
- norm_topk_prob = False,
140
- scoring_func = 'softmax',
141
- aux_loss_alpha = 0.001,
142
- seq_aux = True,
143
- hidden_act="silu",
144
- max_position_embeddings=2048,
145
- initializer_range=0.02,
146
- rms_norm_eps=1e-6,
147
- use_cache=True,
148
- pad_token_id=None,
149
- bos_token_id=100000,
150
- eos_token_id=100001,
151
- pretraining_tp=1,
152
- tie_word_embeddings=False,
153
- rope_theta=10000.0,
154
- rope_scaling=None,
155
- attention_bias=False,
156
- attention_dropout=0.0,
157
- **kwargs,
158
- ):
159
- self.vocab_size = vocab_size
160
- self.max_position_embeddings = max_position_embeddings
161
- self.hidden_size = hidden_size
162
- self.intermediate_size = intermediate_size
163
- self.moe_intermediate_size = moe_intermediate_size
164
- self.num_hidden_layers = num_hidden_layers
165
- self.num_attention_heads = num_attention_heads
166
- self.n_shared_experts = n_shared_experts
167
- self.n_routed_experts = n_routed_experts
168
- self.ep_size = ep_size
169
- self.routed_scaling_factor = routed_scaling_factor
170
- self.kv_lora_rank = kv_lora_rank
171
- self.q_lora_rank = q_lora_rank
172
- self.qk_rope_head_dim = qk_rope_head_dim
173
- self.v_head_dim = v_head_dim
174
- self.qk_nope_head_dim = qk_nope_head_dim
175
- self.topk_method = topk_method
176
- self.n_group = n_group
177
- self.topk_group = topk_group
178
- self.num_experts_per_tok = num_experts_per_tok
179
- self.moe_layer_freq = moe_layer_freq
180
- self.first_k_dense_replace = first_k_dense_replace
181
- self.norm_topk_prob = norm_topk_prob
182
- self.scoring_func = scoring_func
183
- self.aux_loss_alpha = aux_loss_alpha
184
- self.seq_aux = seq_aux
185
- # for backward compatibility
186
- if num_key_value_heads is None:
187
- num_key_value_heads = num_attention_heads
188
-
189
- self.num_key_value_heads = num_key_value_heads
190
- self.hidden_act = hidden_act
191
- self.initializer_range = initializer_range
192
- self.rms_norm_eps = rms_norm_eps
193
- self.pretraining_tp = pretraining_tp
194
- self.use_cache = use_cache
195
- self.rope_theta = rope_theta
196
- self.rope_scaling = rope_scaling
197
- self.attention_bias = attention_bias
198
- self.attention_dropout = attention_dropout
199
-
200
- super().__init__(
201
- pad_token_id=pad_token_id,
202
- bos_token_id=bos_token_id,
203
- eos_token_id=eos_token_id,
204
- tie_word_embeddings=tie_word_embeddings,
205
- **kwargs,
206
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model-00001-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:2076b1986d3e40f1e6969b1d1e30592f90e64d5efb6a14cc1fd98949c70a9b54
3
- size 5040023904
 
 
 
 
model-00002-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d56d5e347c4952025bfbc0380453b51778da6b02a3bd12c5460a6d020116eab8
3
- size 5178819939
 
 
 
 
model-00003-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:54045ea59aba08e13bc1e1f62b9ec46225b53177c6f2859eb3c7490fd20a7e16
3
- size 5178819937
 
 
 
 
model-00004-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:bfdb83804fea67f2d0dc062c58ab042500433c9dd87e1008e7bda41bc8e65c02
3
- size 5290967734
 
 
 
 
model-00005-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b8e015f7ca9df1336458858a85407acc7d79631080eb0bb2cbc3eb379065443e
3
- size 5178820016
 
 
 
 
model-00006-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:dfe437211792e0968914f4d890d378c528904c724b731c9d25eaa756ad2af679
3
- size 5178820026
 
 
 
 
model-00007-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:aca99e4b713ce62abc4972b9d36832544e8db011320f5300964f5890d2dc8fd4
3
- size 5290967857
 
 
 
 
model-00008-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:4dfdca896a3e2b2fd5dea9307004eb8f283d2178d63e17de92e5659826990a50
3
- size 5178820024
 
 
 
 
model-00009-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:993ba871a94c04a67768e9ce273fe1b9edbbbedc56ce48636607765defcb7cff
3
- size 5178820064
 
 
 
 
model-00010-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c2eed17e0b157ab90fb34c33ae2e9b72cbc95dbd624a5ce7b69d17fbe14d2754
3
- size 5290967879
 
 
 
 
model-00011-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:219f69569e5ded7b596d6967e41c38790adfbeee3669fbaf29e4ffc225513a1f
3
- size 5178820026
 
 
 
 
model-00012-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:40350ef762386b943f652cee2d01334b3f48d2f9533befaee24c9f72f06f24b9
3
- size 5178820016
 
 
 
 
model-00013-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:bb790454107867500638be14eb75b01c72304f27c694e0a3160f735f979ad249
3
- size 5290967903
 
 
 
 
model-00014-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:af96fc0511de320eb9b27e14f716d653b95ea90463f2c478a026d79c50070188
3
- size 5178820006
 
 
 
 
model-00015-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:13eb65e7ffdd59e99bced9dfb63ea56fe9d40451beaf536da8a0aa7f5b1534de
3
- size 5178820062
 
 
 
 
model-00016-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:761b768aebd9e9ccd211205737436e8ddc21a247225073b2cfaaeb97e5ab0c91
3
- size 5290967889
 
 
 
 
model-00017-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:169f358999c137c9d358f2605e55a34c8babad675a8766d13792c47dca8f2439
3
- size 5178820032
 
 
 
 
model-00018-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:7d6f860b0a187a6e0f8f882acebf377bbea7168399be29a24754e22e252d2e17
3
- size 5178819996
 
 
 
 
model-00019-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:fae5805fda791fb9fc36ca566f94351bd4014589ee1407e53b64456a1fd89823
3
- size 5290967887
 
 
 
 
model-00020-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e0a82f5a8c16b253678501a0334b237713d47db50b55ef568707cec76ce4147b
3
- size 5178820014
 
 
 
 
model-00021-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d4083c60ff20fa882f61e7ef67af6b4093ec69509c439ba311ce928077ab60bd
3
- size 5178820054
 
 
 
 
model-00022-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:02235c060cd1ebe61a2b9c2fd6eecad314960243ef9159f30887e9528dee2840
3
- size 5290967891
 
 
 
 
model-00023-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1cf3f2fab94812bdfa80d5d9cb7554783364040e30e86ec1dd130348fa298ca5
3
- size 5178820036
 
 
 
 
model-00024-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a2b83dccf682cc2b120ab5beb4e7b1669c6caf2eae0c5da32c953aed1c8a5974
3
- size 5178820018
 
 
 
 
model-00025-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d78f2600847e5c85f811078fa11abd5933210bc98810aedeb2c91f055c66d727
3
- size 5290967891
 
 
 
 
model-00026-of-00026.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:bb64940576490145ca4e70d2cf304c8543b23beb23de7c46d9074f3867cdc42e
3
- size 2446492582
 
 
 
 
model.safetensors.index.json DELETED
The diff for this file is too large to render. See raw diff
 
modeling_deepseek.py DELETED
@@ -1,1922 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
3
- #
4
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
- # and OPT implementations in this library. It has been modified from its
6
- # original forms to accommodate minor architectural differences compared
7
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
- #
9
- # Licensed under the Apache License, Version 2.0 (the "License");
10
- # you may not use this file except in compliance with the License.
11
- # You may obtain a copy of the License at
12
- #
13
- # http://www.apache.org/licenses/LICENSE-2.0
14
- #
15
- # Unless required by applicable law or agreed to in writing, software
16
- # distributed under the License is distributed on an "AS IS" BASIS,
17
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
- # See the License for the specific language governing permissions and
19
- # limitations under the License.
20
- """ PyTorch DeepSeek model."""
21
- import math
22
- import warnings
23
- from typing import List, Optional, Tuple, Union
24
-
25
- import torch
26
- import torch.nn.functional as F
27
- import torch.utils.checkpoint
28
- from torch import nn
29
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
-
31
- from transformers.activations import ACT2FN
32
- from transformers.cache_utils import Cache, DynamicCache
33
- from transformers.modeling_attn_mask_utils import (
34
- AttentionMaskConverter,
35
- _prepare_4d_attention_mask,
36
- _prepare_4d_causal_attention_mask,
37
- )
38
- from transformers.modeling_outputs import (
39
- BaseModelOutputWithPast,
40
- CausalLMOutputWithPast,
41
- SequenceClassifierOutputWithPast,
42
- )
43
- from transformers.modeling_utils import PreTrainedModel
44
- from transformers.pytorch_utils import (
45
- ALL_LAYERNORM_LAYERS,
46
- is_torch_greater_or_equal_than_1_13,
47
- )
48
- from transformers.utils import (
49
- add_start_docstrings,
50
- add_start_docstrings_to_model_forward,
51
- is_flash_attn_2_available,
52
- is_flash_attn_greater_or_equal_2_10,
53
- logging,
54
- replace_return_docstrings,
55
- )
56
- from transformers.utils.import_utils import is_torch_fx_available
57
- from .configuration_deepseek import DeepseekV2Config
58
- import torch.distributed as dist
59
- import numpy as np
60
-
61
- if is_flash_attn_2_available():
62
- from flash_attn import flash_attn_func, flash_attn_varlen_func
63
- from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
64
-
65
-
66
- # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
67
- # It means that the function will not be traced through and simply appear as a node in the graph.
68
- if is_torch_fx_available():
69
- if not is_torch_greater_or_equal_than_1_13:
70
- import torch.fx
71
-
72
- _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
73
-
74
-
75
- logger = logging.get_logger(__name__)
76
-
77
- _CONFIG_FOR_DOC = "DeepseekV2Config"
78
-
79
-
80
- def _get_unpad_data(attention_mask):
81
- seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
82
- indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
83
- max_seqlen_in_batch = seqlens_in_batch.max().item()
84
- cu_seqlens = F.pad(
85
- torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
86
- )
87
- return (
88
- indices,
89
- cu_seqlens,
90
- max_seqlen_in_batch,
91
- )
92
-
93
-
94
- class DeepseekV2RMSNorm(nn.Module):
95
- def __init__(self, hidden_size, eps=1e-6):
96
- """
97
- DeepseekV2RMSNorm is equivalent to T5LayerNorm
98
- """
99
- super().__init__()
100
- self.weight = nn.Parameter(torch.ones(hidden_size))
101
- self.variance_epsilon = eps
102
-
103
- def forward(self, hidden_states):
104
- input_dtype = hidden_states.dtype
105
- hidden_states = hidden_states.to(torch.float32)
106
- variance = hidden_states.pow(2).mean(-1, keepdim=True)
107
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
108
- return self.weight * hidden_states.to(input_dtype)
109
-
110
-
111
- ALL_LAYERNORM_LAYERS.append(DeepseekV2RMSNorm)
112
-
113
-
114
- class DeepseekV2RotaryEmbedding(nn.Module):
115
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
116
- super().__init__()
117
-
118
- self.dim = dim
119
- self.max_position_embeddings = max_position_embeddings
120
- self.base = base
121
- inv_freq = 1.0 / (
122
- self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
123
- )
124
- self.register_buffer("inv_freq", inv_freq, persistent=False)
125
-
126
- # Build here to make `torch.jit.trace` work.
127
- self._set_cos_sin_cache(
128
- seq_len=max_position_embeddings,
129
- device=self.inv_freq.device,
130
- dtype=torch.get_default_dtype(),
131
- )
132
- self.max_seq_len_cached = None
133
-
134
- def _set_cos_sin_cache(self, seq_len, device, dtype):
135
- self.max_seq_len_cached = seq_len
136
- t = torch.arange(
137
- self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
138
- )
139
-
140
- freqs = torch.outer(t, self.inv_freq.to(t.device))
141
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
142
- emb = torch.cat((freqs, freqs), dim=-1)
143
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
144
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
145
-
146
- def forward(self, x, seq_len=None):
147
- # x: [bs, num_attention_heads, seq_len, head_size]
148
- if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached:
149
- self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
150
-
151
- return (
152
- self.cos_cached[:seq_len].to(dtype=x.dtype),
153
- self.sin_cached[:seq_len].to(dtype=x.dtype),
154
- )
155
-
156
-
157
- # Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV2
158
- class DeepseekV2LinearScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
159
- """DeepseekV2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
160
-
161
- def __init__(
162
- self,
163
- dim,
164
- max_position_embeddings=2048,
165
- base=10000,
166
- device=None,
167
- scaling_factor=1.0,
168
- ):
169
- self.scaling_factor = scaling_factor
170
- super().__init__(dim, max_position_embeddings, base, device)
171
-
172
- def _set_cos_sin_cache(self, seq_len, device, dtype):
173
- self.max_seq_len_cached = seq_len
174
- t = torch.arange(
175
- self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
176
- )
177
- t = t / self.scaling_factor
178
-
179
- freqs = torch.outer(t, self.inv_freq)
180
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
181
- emb = torch.cat((freqs, freqs), dim=-1)
182
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
183
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
184
-
185
-
186
- # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV2
187
- class DeepseekV2DynamicNTKScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
188
- """DeepseekV2RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
189
-
190
- def __init__(
191
- self,
192
- dim,
193
- max_position_embeddings=2048,
194
- base=10000,
195
- device=None,
196
- scaling_factor=1.0,
197
- ):
198
- self.scaling_factor = scaling_factor
199
- super().__init__(dim, max_position_embeddings, base, device)
200
-
201
- def _set_cos_sin_cache(self, seq_len, device, dtype):
202
- self.max_seq_len_cached = seq_len
203
-
204
- if seq_len > self.max_position_embeddings:
205
- base = self.base * (
206
- (self.scaling_factor * seq_len / self.max_position_embeddings)
207
- - (self.scaling_factor - 1)
208
- ) ** (self.dim / (self.dim - 2))
209
- inv_freq = 1.0 / (
210
- base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
211
- )
212
- self.register_buffer("inv_freq", inv_freq, persistent=False)
213
-
214
- t = torch.arange(
215
- self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
216
- )
217
-
218
- freqs = torch.outer(t, self.inv_freq)
219
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
220
- emb = torch.cat((freqs, freqs), dim=-1)
221
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
222
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
223
-
224
-
225
- # Inverse dim formula to find dim based on number of rotations
226
- def yarn_find_correction_dim(
227
- num_rotations, dim, base=10000, max_position_embeddings=2048
228
- ):
229
- return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
230
- 2 * math.log(base)
231
- )
232
-
233
-
234
- # Find dim range bounds based on rotations
235
- def yarn_find_correction_range(
236
- low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
237
- ):
238
- low = math.floor(
239
- yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
240
- )
241
- high = math.ceil(
242
- yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
243
- )
244
- return max(low, 0), min(high, dim - 1) # Clamp values just in case
245
-
246
-
247
- def yarn_get_mscale(scale=1, mscale=1):
248
- if scale <= 1:
249
- return 1.0
250
- return 0.1 * mscale * math.log(scale) + 1.0
251
-
252
-
253
- def yarn_linear_ramp_mask(min, max, dim):
254
- if min == max:
255
- max += 0.001 # Prevent singularity
256
-
257
- linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
258
- ramp_func = torch.clamp(linear_func, 0, 1)
259
- return ramp_func
260
-
261
-
262
- class DeepseekV2YarnRotaryEmbedding(DeepseekV2RotaryEmbedding):
263
-
264
- def __init__(
265
- self,
266
- dim,
267
- max_position_embeddings=2048,
268
- base=10000,
269
- device=None,
270
- scaling_factor=1.0,
271
- original_max_position_embeddings=4096,
272
- beta_fast=32,
273
- beta_slow=1,
274
- mscale=1,
275
- mscale_all_dim=0,
276
- ):
277
- self.scaling_factor = scaling_factor
278
- self.original_max_position_embeddings = original_max_position_embeddings
279
- self.beta_fast = beta_fast
280
- self.beta_slow = beta_slow
281
- self.mscale = mscale
282
- self.mscale_all_dim = mscale_all_dim
283
- super().__init__(dim, max_position_embeddings, base, device)
284
-
285
- def _set_cos_sin_cache(self, seq_len, device, dtype):
286
- self.max_seq_len_cached = seq_len
287
- dim = self.dim
288
-
289
- freq_extra = 1.0 / (
290
- self.base
291
- ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
292
- )
293
- freq_inter = 1.0 / (
294
- self.scaling_factor
295
- * self.base
296
- ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
297
- )
298
-
299
- low, high = yarn_find_correction_range(
300
- self.beta_fast,
301
- self.beta_slow,
302
- dim,
303
- self.base,
304
- self.original_max_position_embeddings,
305
- )
306
- inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
307
- device=device, dtype=torch.float32
308
- )
309
- inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
310
- self.register_buffer("inv_freq", inv_freq, persistent=False)
311
-
312
- t = torch.arange(seq_len, device=device, dtype=torch.float32)
313
-
314
- freqs = torch.outer(t, inv_freq)
315
-
316
- _mscale = float(
317
- yarn_get_mscale(self.scaling_factor, self.mscale)
318
- / yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
319
- )
320
-
321
- emb = torch.cat((freqs, freqs), dim=-1)
322
- self.register_buffer(
323
- "cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False
324
- )
325
- self.register_buffer(
326
- "sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False
327
- )
328
-
329
-
330
- # Copied from transformers.models.llama.modeling_llama.rotate_half
331
- def rotate_half(x):
332
- """Rotates half the hidden dims of the input."""
333
- x1 = x[..., : x.shape[-1] // 2]
334
- x2 = x[..., x.shape[-1] // 2 :]
335
- return torch.cat((-x2, x1), dim=-1)
336
-
337
-
338
- # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
339
- def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
340
- """Applies Rotary Position Embedding to the query and key tensors.
341
-
342
- Args:
343
- q (`torch.Tensor`): The query tensor.
344
- k (`torch.Tensor`): The key tensor.
345
- cos (`torch.Tensor`): The cosine part of the rotary embedding.
346
- sin (`torch.Tensor`): The sine part of the rotary embedding.
347
- position_ids (`torch.Tensor`):
348
- The position indices of the tokens corresponding to the query and key tensors. For example, this can be
349
- used to pass offsetted position ids when working with a KV-cache.
350
- unsqueeze_dim (`int`, *optional*, defaults to 1):
351
- The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
352
- sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
353
- that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
354
- k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
355
- cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
356
- the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
357
- Returns:
358
- `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
359
- """
360
- cos = cos[position_ids].unsqueeze(unsqueeze_dim)
361
- sin = sin[position_ids].unsqueeze(unsqueeze_dim)
362
-
363
- b, h, s, d = q.shape
364
- q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
365
-
366
- b, h, s, d = k.shape
367
- k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
368
-
369
- q_embed = (q * cos) + (rotate_half(q) * sin)
370
- k_embed = (k * cos) + (rotate_half(k) * sin)
371
- return q_embed, k_embed
372
-
373
-
374
- class DeepseekV2MLP(nn.Module):
375
- def __init__(self, config, hidden_size=None, intermediate_size=None):
376
- super().__init__()
377
- self.config = config
378
- self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
379
- self.intermediate_size = (
380
- config.intermediate_size if intermediate_size is None else intermediate_size
381
- )
382
-
383
- self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
384
- self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
385
- self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
386
- self.act_fn = ACT2FN[config.hidden_act]
387
-
388
- def forward(self, x):
389
- down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
390
- return down_proj
391
-
392
-
393
- class MoEGate(nn.Module):
394
- def __init__(self, config):
395
- super().__init__()
396
- self.config = config
397
- self.top_k = config.num_experts_per_tok
398
- self.n_routed_experts = config.n_routed_experts
399
- self.routed_scaling_factor = config.routed_scaling_factor
400
- self.scoring_func = config.scoring_func
401
- self.alpha = config.aux_loss_alpha
402
- self.seq_aux = config.seq_aux
403
- self.topk_method = config.topk_method
404
- self.n_group = config.n_group
405
- self.topk_group = config.topk_group
406
-
407
- # topk selection algorithm
408
- self.norm_topk_prob = config.norm_topk_prob
409
- self.gating_dim = config.hidden_size
410
- self.weight = nn.Parameter(
411
- torch.empty((self.n_routed_experts, self.gating_dim))
412
- )
413
- self.reset_parameters()
414
-
415
- def reset_parameters(self) -> None:
416
- import torch.nn.init as init
417
-
418
- init.kaiming_uniform_(self.weight, a=math.sqrt(5))
419
-
420
- def forward(self, hidden_states):
421
- bsz, seq_len, h = hidden_states.shape
422
- ### compute gating score
423
- hidden_states = hidden_states.view(-1, h)
424
- logits = F.linear(
425
- hidden_states.type(torch.float32), self.weight.type(torch.float32), None
426
- )
427
- if self.scoring_func == "softmax":
428
- scores = logits.softmax(dim=-1, dtype=torch.float32)
429
- else:
430
- raise NotImplementedError(
431
- f"insupportable scoring function for MoE gating: {self.scoring_func}"
432
- )
433
-
434
- ### select top-k experts
435
- if self.topk_method == "greedy":
436
- topk_weight, topk_idx = torch.topk(
437
- scores, k=self.top_k, dim=-1, sorted=False
438
- )
439
- elif self.topk_method == "group_limited_greedy":
440
- group_scores = (
441
- scores.view(bsz * seq_len, self.n_group, -1).max(dim=-1).values
442
- ) # [n, n_group]
443
- group_idx = torch.topk(
444
- group_scores, k=self.topk_group, dim=-1, sorted=False
445
- )[
446
- 1
447
- ] # [n, top_k_group]
448
- group_mask = torch.zeros_like(group_scores) # [n, n_group]
449
- group_mask.scatter_(1, group_idx, 1) # [n, n_group]
450
- score_mask = (
451
- group_mask.unsqueeze(-1)
452
- .expand(
453
- bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
454
- )
455
- .reshape(bsz * seq_len, -1)
456
- ) # [n, e]
457
- tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
458
- topk_weight, topk_idx = torch.topk(
459
- tmp_scores, k=self.top_k, dim=-1, sorted=False
460
- )
461
-
462
- ### norm gate to sum 1
463
- if self.top_k > 1 and self.norm_topk_prob:
464
- denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
465
- topk_weight = topk_weight / denominator
466
- else:
467
- topk_weight = topk_weight * self.routed_scaling_factor
468
- ### expert-level computation auxiliary loss
469
- if self.training and self.alpha > 0.0:
470
- scores_for_aux = scores
471
- aux_topk = self.top_k
472
- # always compute aux loss based on the naive greedy topk method
473
- topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
474
- if self.seq_aux:
475
- scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
476
- ce = torch.zeros(
477
- bsz, self.n_routed_experts, device=hidden_states.device
478
- )
479
- ce.scatter_add_(
480
- 1,
481
- topk_idx_for_aux_loss,
482
- torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device),
483
- ).div_(seq_len * aux_topk / self.n_routed_experts)
484
- aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(
485
- dim=1
486
- ).mean() * self.alpha
487
- else:
488
- mask_ce = F.one_hot(
489
- topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts
490
- )
491
- ce = mask_ce.float().mean(0)
492
- Pi = scores_for_aux.mean(0)
493
- fi = ce * self.n_routed_experts
494
- aux_loss = (Pi * fi).sum() * self.alpha
495
- else:
496
- aux_loss = None
497
- return topk_idx, topk_weight, aux_loss
498
-
499
-
500
- class AddAuxiliaryLoss(torch.autograd.Function):
501
- """
502
- The trick function of adding auxiliary (aux) loss,
503
- which includes the gradient of the aux loss during backpropagation.
504
- """
505
-
506
- @staticmethod
507
- def forward(ctx, x, loss):
508
- assert loss.numel() == 1
509
- ctx.dtype = loss.dtype
510
- ctx.required_aux_loss = loss.requires_grad
511
- return x
512
-
513
- @staticmethod
514
- def backward(ctx, grad_output):
515
- grad_loss = None
516
- if ctx.required_aux_loss:
517
- grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
518
- return grad_output, grad_loss
519
-
520
-
521
- class DeepseekV2MoE(nn.Module):
522
- """
523
- A mixed expert module containing shared experts.
524
- """
525
-
526
- def __init__(self, config):
527
- super().__init__()
528
- self.config = config
529
- self.num_experts_per_tok = config.num_experts_per_tok
530
-
531
- if hasattr(config, "ep_size") and config.ep_size > 1:
532
- assert config.ep_size == dist.get_world_size()
533
- self.ep_size = config.ep_size
534
- self.experts_per_rank = config.n_routed_experts // config.ep_size
535
- self.ep_rank = dist.get_rank()
536
- self.experts = nn.ModuleList(
537
- [
538
- (
539
- DeepseekV2MLP(
540
- config, intermediate_size=config.moe_intermediate_size
541
- )
542
- if i >= self.ep_rank * self.experts_per_rank
543
- and i < (self.ep_rank + 1) * self.experts_per_rank
544
- else None
545
- )
546
- for i in range(config.n_routed_experts)
547
- ]
548
- )
549
- else:
550
- self.ep_size = 1
551
- self.experts_per_rank = config.n_routed_experts
552
- self.ep_rank = 0
553
- self.experts = nn.ModuleList(
554
- [
555
- DeepseekV2MLP(
556
- config, intermediate_size=config.moe_intermediate_size
557
- )
558
- for i in range(config.n_routed_experts)
559
- ]
560
- )
561
- self.gate = MoEGate(config)
562
- if config.n_shared_experts is not None:
563
- intermediate_size = config.moe_intermediate_size * config.n_shared_experts
564
- self.shared_experts = DeepseekV2MLP(
565
- config=config, intermediate_size=intermediate_size
566
- )
567
-
568
- def forward(self, hidden_states):
569
- identity = hidden_states
570
- orig_shape = hidden_states.shape
571
- topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
572
- hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
573
- flat_topk_idx = topk_idx.view(-1)
574
- if self.training:
575
- hidden_states = hidden_states.repeat_interleave(
576
- self.num_experts_per_tok, dim=0
577
- )
578
- y = torch.empty_like(hidden_states)
579
- for i, expert in enumerate(self.experts):
580
- y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
581
- y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
582
- y = y.to(hidden_states.dtype).view(*orig_shape)
583
- y = AddAuxiliaryLoss.apply(y, aux_loss)
584
- else:
585
- y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
586
- if self.config.n_shared_experts is not None:
587
- y = y + self.shared_experts(identity)
588
- return y
589
-
590
- @torch.no_grad()
591
- def moe_infer(self, x, topk_ids, topk_weight):
592
- cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
593
- cnts.scatter_(1, topk_ids, 1)
594
- tokens_per_expert = cnts.sum(dim=0)
595
- idxs = topk_ids.view(-1).argsort()
596
- sorted_tokens = x[idxs // topk_ids.shape[1]]
597
- sorted_tokens_shape = sorted_tokens.shape
598
- if self.ep_size > 1:
599
- tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1)
600
- tokens_per_expert_group = tokens_per_expert.new_empty(
601
- tokens_per_expert.shape[0]
602
- )
603
- dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert)
604
- output_splits = (
605
- tokens_per_expert_group.view(self.ep_size, -1)
606
- .sum(1)
607
- .cpu()
608
- .numpy()
609
- .tolist()
610
- )
611
- gathered_tokens = sorted_tokens.new_empty(
612
- tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1]
613
- )
614
- input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist()
615
- dist.all_to_all(
616
- list(gathered_tokens.split(output_splits)),
617
- list(sorted_tokens.split(input_split_sizes)),
618
- )
619
- tokens_per_expert_post_gather = tokens_per_expert_group.view(
620
- self.ep_size, self.experts_per_rank
621
- ).sum(dim=0)
622
- gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32)
623
- s = 0
624
- for i, k in enumerate(tokens_per_expert_group.cpu().numpy()):
625
- gatherd_idxs[s : s + k] = i % self.experts_per_rank
626
- s += k
627
- gatherd_idxs = gatherd_idxs.argsort()
628
- sorted_tokens = gathered_tokens[gatherd_idxs]
629
- tokens_per_expert = tokens_per_expert_post_gather
630
- tokens_per_expert = tokens_per_expert.cpu().numpy()
631
-
632
- outputs = []
633
- start_idx = 0
634
- for i, num_tokens in enumerate(tokens_per_expert):
635
- end_idx = start_idx + num_tokens
636
- if num_tokens == 0:
637
- continue
638
- expert = self.experts[i + self.ep_rank * self.experts_per_rank]
639
- tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
640
- expert_out = expert(tokens_for_this_expert)
641
- outputs.append(expert_out)
642
- start_idx = end_idx
643
-
644
- outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
645
- if self.ep_size > 1:
646
- new_x = torch.empty_like(outs)
647
- new_x[gatherd_idxs] = outs
648
- gathered_tokens = new_x.new_empty(*sorted_tokens_shape)
649
- dist.all_to_all(
650
- list(gathered_tokens.split(input_split_sizes)),
651
- list(new_x.split(output_splits)),
652
- )
653
- outs = gathered_tokens
654
-
655
- new_x = torch.empty_like(outs)
656
- new_x[idxs] = outs
657
- final_out = (
658
- new_x.view(*topk_ids.shape, -1)
659
- .type(topk_weight.dtype)
660
- .mul_(topk_weight.unsqueeze(dim=-1))
661
- .sum(dim=1)
662
- .type(new_x.dtype)
663
- )
664
- return final_out
665
-
666
-
667
- # Copied from transformers.models.llama.modeling_llama.repeat_kv
668
- def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
669
- """
670
- This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
671
- num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
672
- """
673
- batch, num_key_value_heads, slen, head_dim = hidden_states.shape
674
- if n_rep == 1:
675
- return hidden_states
676
- hidden_states = hidden_states[:, :, None, :, :].expand(
677
- batch, num_key_value_heads, n_rep, slen, head_dim
678
- )
679
- return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
680
-
681
-
682
- # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV2
683
- class DeepseekV2Attention(nn.Module):
684
- """Multi-headed attention from 'Attention Is All You Need' paper"""
685
-
686
- def __init__(self, config: DeepseekV2Config, layer_idx: Optional[int] = None):
687
- super().__init__()
688
- self.config = config
689
- self.layer_idx = layer_idx
690
- if layer_idx is None:
691
- logger.warning_once(
692
- f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
693
- "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
694
- "when creating this class."
695
- )
696
-
697
- self.attention_dropout = config.attention_dropout
698
- self.hidden_size = config.hidden_size
699
- self.num_heads = config.num_attention_heads
700
-
701
- self.max_position_embeddings = config.max_position_embeddings
702
- self.rope_theta = config.rope_theta
703
- self.q_lora_rank = config.q_lora_rank
704
- self.qk_rope_head_dim = config.qk_rope_head_dim
705
- self.kv_lora_rank = config.kv_lora_rank
706
- self.v_head_dim = config.v_head_dim
707
- self.qk_nope_head_dim = config.qk_nope_head_dim
708
- self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
709
-
710
- self.is_causal = True
711
-
712
- if self.q_lora_rank is None:
713
- self.q_proj = nn.Linear(
714
- self.hidden_size, self.num_heads * self.q_head_dim, bias=False
715
- )
716
- else:
717
- self.q_a_proj = nn.Linear(
718
- self.hidden_size, config.q_lora_rank, bias=config.attention_bias
719
- )
720
- self.q_a_layernorm = DeepseekV2RMSNorm(config.q_lora_rank)
721
- self.q_b_proj = nn.Linear(
722
- config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
723
- )
724
-
725
- self.kv_a_proj_with_mqa = nn.Linear(
726
- self.hidden_size,
727
- config.kv_lora_rank + config.qk_rope_head_dim,
728
- bias=config.attention_bias,
729
- )
730
- self.kv_a_layernorm = DeepseekV2RMSNorm(config.kv_lora_rank)
731
- self.kv_b_proj = nn.Linear(
732
- config.kv_lora_rank,
733
- self.num_heads
734
- * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
735
- bias=False,
736
- )
737
-
738
- self.o_proj = nn.Linear(
739
- self.num_heads * self.v_head_dim,
740
- self.hidden_size,
741
- bias=config.attention_bias,
742
- )
743
- self._init_rope()
744
-
745
- self.softmax_scale = self.q_head_dim ** (-0.5)
746
- if self.config.rope_scaling is not None:
747
- mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
748
- scaling_factor = self.config.rope_scaling["factor"]
749
- if mscale_all_dim:
750
- mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
751
- self.softmax_scale = self.softmax_scale * mscale * mscale
752
-
753
- def _init_rope(self):
754
- if self.config.rope_scaling is None:
755
- self.rotary_emb = DeepseekV2RotaryEmbedding(
756
- self.qk_rope_head_dim,
757
- max_position_embeddings=self.max_position_embeddings,
758
- base=self.rope_theta,
759
- )
760
- else:
761
- scaling_type = self.config.rope_scaling["type"]
762
- scaling_factor = self.config.rope_scaling["factor"]
763
- if scaling_type == "linear":
764
- self.rotary_emb = DeepseekV2LinearScalingRotaryEmbedding(
765
- self.qk_rope_head_dim,
766
- max_position_embeddings=self.max_position_embeddings,
767
- scaling_factor=scaling_factor,
768
- base=self.rope_theta,
769
- )
770
- elif scaling_type == "dynamic":
771
- self.rotary_emb = DeepseekV2DynamicNTKScalingRotaryEmbedding(
772
- self.qk_rope_head_dim,
773
- max_position_embeddings=self.max_position_embeddings,
774
- scaling_factor=scaling_factor,
775
- base=self.rope_theta,
776
- )
777
- elif scaling_type == "yarn":
778
- kwargs = {
779
- key: self.config.rope_scaling[key]
780
- for key in [
781
- "original_max_position_embeddings",
782
- "beta_fast",
783
- "beta_slow",
784
- "mscale",
785
- "mscale_all_dim",
786
- ]
787
- if key in self.config.rope_scaling
788
- }
789
- self.rotary_emb = DeepseekV2YarnRotaryEmbedding(
790
- self.qk_rope_head_dim,
791
- max_position_embeddings=self.max_position_embeddings,
792
- scaling_factor=scaling_factor,
793
- base=self.rope_theta,
794
- **kwargs,
795
- )
796
- else:
797
- raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
798
-
799
- def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
800
- return (
801
- tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim)
802
- .transpose(1, 2)
803
- .contiguous()
804
- )
805
-
806
- def forward(
807
- self,
808
- hidden_states: torch.Tensor,
809
- attention_mask: Optional[torch.Tensor] = None,
810
- position_ids: Optional[torch.LongTensor] = None,
811
- past_key_value: Optional[Cache] = None,
812
- output_attentions: bool = False,
813
- use_cache: bool = False,
814
- **kwargs,
815
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
816
- if "padding_mask" in kwargs:
817
- warnings.warn(
818
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
819
- )
820
- bsz, q_len, _ = hidden_states.size()
821
-
822
- if self.q_lora_rank is None:
823
- q = self.q_proj(hidden_states)
824
- else:
825
- q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
826
- q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
827
- q_nope, q_pe = torch.split(
828
- q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
829
- )
830
-
831
- compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
832
- compressed_kv, k_pe = torch.split(
833
- compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
834
- )
835
- k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
836
- kv = (
837
- self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
838
- .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
839
- .transpose(1, 2)
840
- )
841
-
842
- k_nope, value_states = torch.split(
843
- kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
844
- )
845
- kv_seq_len = value_states.shape[-2]
846
- if past_key_value is not None:
847
- if self.layer_idx is None:
848
- raise ValueError(
849
- f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
850
- "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
851
- "with a layer index."
852
- )
853
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
854
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
855
-
856
- q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
857
-
858
- query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
859
- query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
860
- query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
861
-
862
- key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
863
- key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
864
- key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
865
- if past_key_value is not None:
866
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
867
- key_states, value_states = past_key_value.update(
868
- key_states, value_states, self.layer_idx, cache_kwargs
869
- )
870
-
871
- attn_weights = (
872
- torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale
873
- )
874
-
875
- if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
876
- raise ValueError(
877
- f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
878
- f" {attn_weights.size()}"
879
- )
880
- assert attention_mask is not None
881
- if attention_mask is not None:
882
- if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
883
- raise ValueError(
884
- f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
885
- )
886
- attn_weights = attn_weights + attention_mask
887
-
888
- # upcast attention to fp32
889
- attn_weights = nn.functional.softmax(
890
- attn_weights, dim=-1, dtype=torch.float32
891
- ).to(query_states.dtype)
892
- attn_weights = nn.functional.dropout(
893
- attn_weights, p=self.attention_dropout, training=self.training
894
- )
895
- attn_output = torch.matmul(attn_weights, value_states)
896
-
897
- if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
898
- raise ValueError(
899
- f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
900
- f" {attn_output.size()}"
901
- )
902
-
903
- attn_output = attn_output.transpose(1, 2).contiguous()
904
-
905
- attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
906
-
907
- attn_output = self.o_proj(attn_output)
908
-
909
- if not output_attentions:
910
- attn_weights = None
911
-
912
- return attn_output, attn_weights, past_key_value
913
-
914
-
915
- # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV2
916
- class DeepseekV2FlashAttention2(DeepseekV2Attention):
917
- """
918
- DeepseekV2 flash attention module. This module inherits from `DeepseekV2Attention` as the weights of the module stays
919
- untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
920
- flash attention and deal with padding tokens in case the input contains any of them.
921
- """
922
-
923
- def __init__(self, *args, **kwargs):
924
- super().__init__(*args, **kwargs)
925
-
926
- # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
927
- # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
928
- # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
929
- self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
930
-
931
- def forward(
932
- self,
933
- hidden_states: torch.Tensor,
934
- attention_mask: Optional[torch.LongTensor] = None,
935
- position_ids: Optional[torch.LongTensor] = None,
936
- past_key_value: Optional[Cache] = None,
937
- output_attentions: bool = False,
938
- use_cache: bool = False,
939
- **kwargs,
940
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
941
- # DeepseekV2FlashAttention2 attention does not support output_attentions
942
- if "padding_mask" in kwargs:
943
- warnings.warn(
944
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
945
- )
946
-
947
- # overwrite attention_mask with padding_mask
948
- attention_mask = kwargs.pop("padding_mask")
949
-
950
- output_attentions = False
951
-
952
- bsz, q_len, _ = hidden_states.size()
953
-
954
- if self.q_lora_rank is None:
955
- q = self.q_proj(hidden_states)
956
- else:
957
- q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
958
- q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
959
- q_nope, q_pe = torch.split(
960
- q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
961
- )
962
-
963
- # Flash attention requires the input to have the shape
964
- # batch_size x seq_length x head_dim x hidden_dim
965
- # therefore we just need to keep the original shape
966
- compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
967
- compressed_kv, k_pe = torch.split(
968
- compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
969
- )
970
- k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
971
- kv = (
972
- self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
973
- .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
974
- .transpose(1, 2)
975
- )
976
-
977
- k_nope, value_states = torch.split(
978
- kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
979
- )
980
- kv_seq_len = value_states.shape[-2]
981
-
982
- kv_seq_len = value_states.shape[-2]
983
- if past_key_value is not None:
984
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
985
-
986
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
987
- q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
988
-
989
- query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
990
- query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
991
- query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
992
-
993
- key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
994
- key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
995
- key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
996
-
997
- if self.q_head_dim != self.v_head_dim:
998
- value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
999
-
1000
- if past_key_value is not None:
1001
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
1002
- key_states, value_states = past_key_value.update(
1003
- key_states, value_states, self.layer_idx, cache_kwargs
1004
- )
1005
-
1006
- # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
1007
- # to be able to avoid many of these transpose/reshape/view.
1008
- query_states = query_states.transpose(1, 2)
1009
- key_states = key_states.transpose(1, 2)
1010
- value_states = value_states.transpose(1, 2)
1011
-
1012
- dropout_rate = self.attention_dropout if self.training else 0.0
1013
-
1014
- # In PEFT, usually we cast the layer norms in float32 for training stability reasons
1015
- # therefore the input hidden states gets silently casted in float32. Hence, we need
1016
- # cast them back in the correct dtype just to be sure everything works as expected.
1017
- # This might slowdown training & inference so it is recommended to not cast the LayerNorms
1018
- # in fp32. (DeepseekV2RMSNorm handles it correctly)
1019
-
1020
- input_dtype = query_states.dtype
1021
- if input_dtype == torch.float32:
1022
- # Handle the case where the model is quantized
1023
- if hasattr(self.config, "_pre_quantization_dtype"):
1024
- target_dtype = self.config._pre_quantization_dtype
1025
- elif torch.is_autocast_enabled():
1026
- target_dtype = torch.get_autocast_gpu_dtype()
1027
- else:
1028
- target_dtype = (
1029
- self.q_proj.weight.dtype
1030
- if self.q_lora_rank is None
1031
- else self.q_a_proj.weight.dtype
1032
- )
1033
-
1034
- logger.warning_once(
1035
- f"The input hidden states seems to be silently casted in float32, this might be related to"
1036
- f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
1037
- f" {target_dtype}."
1038
- )
1039
-
1040
- query_states = query_states.to(target_dtype)
1041
- key_states = key_states.to(target_dtype)
1042
- value_states = value_states.to(target_dtype)
1043
-
1044
- attn_output = self._flash_attention_forward(
1045
- query_states,
1046
- key_states,
1047
- value_states,
1048
- attention_mask,
1049
- q_len,
1050
- dropout=dropout_rate,
1051
- softmax_scale=self.softmax_scale,
1052
- )
1053
- if self.q_head_dim != self.v_head_dim:
1054
- attn_output = attn_output[:, :, :, : self.v_head_dim]
1055
-
1056
- attn_output = attn_output.reshape(
1057
- bsz, q_len, self.num_heads * self.v_head_dim
1058
- ).contiguous()
1059
- attn_output = self.o_proj(attn_output)
1060
-
1061
- if not output_attentions:
1062
- attn_weights = None
1063
-
1064
- return attn_output, attn_weights, past_key_value
1065
-
1066
- def _flash_attention_forward(
1067
- self,
1068
- query_states,
1069
- key_states,
1070
- value_states,
1071
- attention_mask,
1072
- query_length,
1073
- dropout=0.0,
1074
- softmax_scale=None,
1075
- ):
1076
- """
1077
- Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
1078
- first unpad the input, then computes the attention scores and pad the final attention scores.
1079
-
1080
- Args:
1081
- query_states (`torch.Tensor`):
1082
- Input query states to be passed to Flash Attention API
1083
- key_states (`torch.Tensor`):
1084
- Input key states to be passed to Flash Attention API
1085
- value_states (`torch.Tensor`):
1086
- Input value states to be passed to Flash Attention API
1087
- attention_mask (`torch.Tensor`):
1088
- The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
1089
- position of padding tokens and 1 for the position of non-padding tokens.
1090
- dropout (`int`, *optional*):
1091
- Attention dropout
1092
- softmax_scale (`float`, *optional*):
1093
- The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
1094
- """
1095
- if not self._flash_attn_uses_top_left_mask:
1096
- causal = self.is_causal
1097
- else:
1098
- # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV2FlashAttention2 __init__.
1099
- causal = self.is_causal and query_length != 1
1100
-
1101
- # Contains at least one padding token in the sequence
1102
- if attention_mask is not None:
1103
- batch_size = query_states.shape[0]
1104
- (
1105
- query_states,
1106
- key_states,
1107
- value_states,
1108
- indices_q,
1109
- cu_seq_lens,
1110
- max_seq_lens,
1111
- ) = self._upad_input(
1112
- query_states, key_states, value_states, attention_mask, query_length
1113
- )
1114
-
1115
- cu_seqlens_q, cu_seqlens_k = cu_seq_lens
1116
- max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
1117
-
1118
- attn_output_unpad = flash_attn_varlen_func(
1119
- query_states,
1120
- key_states,
1121
- value_states,
1122
- cu_seqlens_q=cu_seqlens_q,
1123
- cu_seqlens_k=cu_seqlens_k,
1124
- max_seqlen_q=max_seqlen_in_batch_q,
1125
- max_seqlen_k=max_seqlen_in_batch_k,
1126
- dropout_p=dropout,
1127
- softmax_scale=softmax_scale,
1128
- causal=causal,
1129
- )
1130
-
1131
- attn_output = pad_input(
1132
- attn_output_unpad, indices_q, batch_size, query_length
1133
- )
1134
- else:
1135
- attn_output = flash_attn_func(
1136
- query_states,
1137
- key_states,
1138
- value_states,
1139
- dropout,
1140
- softmax_scale=softmax_scale,
1141
- causal=causal,
1142
- )
1143
-
1144
- return attn_output
1145
-
1146
- def _upad_input(
1147
- self, query_layer, key_layer, value_layer, attention_mask, query_length
1148
- ):
1149
- indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
1150
- batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
1151
-
1152
- key_layer = index_first_axis(
1153
- key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1154
- indices_k,
1155
- )
1156
- value_layer = index_first_axis(
1157
- value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1158
- indices_k,
1159
- )
1160
- if query_length == kv_seq_len:
1161
- query_layer = index_first_axis(
1162
- query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
1163
- indices_k,
1164
- )
1165
- cu_seqlens_q = cu_seqlens_k
1166
- max_seqlen_in_batch_q = max_seqlen_in_batch_k
1167
- indices_q = indices_k
1168
- elif query_length == 1:
1169
- max_seqlen_in_batch_q = 1
1170
- cu_seqlens_q = torch.arange(
1171
- batch_size + 1, dtype=torch.int32, device=query_layer.device
1172
- ) # There is a memcpy here, that is very bad.
1173
- indices_q = cu_seqlens_q[:-1]
1174
- query_layer = query_layer.squeeze(1)
1175
- else:
1176
- # The -q_len: slice assumes left padding.
1177
- attention_mask = attention_mask[:, -query_length:]
1178
- query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
1179
- query_layer, attention_mask
1180
- )
1181
-
1182
- return (
1183
- query_layer,
1184
- key_layer,
1185
- value_layer,
1186
- indices_q,
1187
- (cu_seqlens_q, cu_seqlens_k),
1188
- (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
1189
- )
1190
-
1191
-
1192
- ATTENTION_CLASSES = {
1193
- "eager": DeepseekV2Attention,
1194
- "flash_attention_2": DeepseekV2FlashAttention2,
1195
- }
1196
-
1197
-
1198
- class DeepseekV2DecoderLayer(nn.Module):
1199
- def __init__(self, config: DeepseekV2Config, layer_idx: int):
1200
- super().__init__()
1201
- self.hidden_size = config.hidden_size
1202
-
1203
- self.self_attn = ATTENTION_CLASSES[config._attn_implementation](
1204
- config=config, layer_idx=layer_idx
1205
- )
1206
-
1207
- self.mlp = (
1208
- DeepseekV2MoE(config)
1209
- if (
1210
- config.n_routed_experts is not None
1211
- and layer_idx >= config.first_k_dense_replace
1212
- and layer_idx % config.moe_layer_freq == 0
1213
- )
1214
- else DeepseekV2MLP(config)
1215
- )
1216
- self.input_layernorm = DeepseekV2RMSNorm(
1217
- config.hidden_size, eps=config.rms_norm_eps
1218
- )
1219
- self.post_attention_layernorm = DeepseekV2RMSNorm(
1220
- config.hidden_size, eps=config.rms_norm_eps
1221
- )
1222
-
1223
- def forward(
1224
- self,
1225
- hidden_states: torch.Tensor,
1226
- attention_mask: Optional[torch.Tensor] = None,
1227
- position_ids: Optional[torch.LongTensor] = None,
1228
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
1229
- output_attentions: Optional[bool] = False,
1230
- use_cache: Optional[bool] = False,
1231
- **kwargs,
1232
- ) -> Tuple[
1233
- torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
1234
- ]:
1235
- """
1236
- Args:
1237
- hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
1238
- attention_mask (`torch.FloatTensor`, *optional*):
1239
- attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
1240
- query_sequence_length, key_sequence_length)` if default attention is used.
1241
- output_attentions (`bool`, *optional*):
1242
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1243
- returned tensors for more detail.
1244
- use_cache (`bool`, *optional*):
1245
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1246
- (see `past_key_values`).
1247
- past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
1248
- """
1249
- if "padding_mask" in kwargs:
1250
- warnings.warn(
1251
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
1252
- )
1253
- residual = hidden_states
1254
-
1255
- hidden_states = self.input_layernorm(hidden_states)
1256
-
1257
- # Self Attention
1258
- hidden_states, self_attn_weights, present_key_value = self.self_attn(
1259
- hidden_states=hidden_states,
1260
- attention_mask=attention_mask,
1261
- position_ids=position_ids,
1262
- past_key_value=past_key_value,
1263
- output_attentions=output_attentions,
1264
- use_cache=use_cache,
1265
- **kwargs,
1266
- )
1267
- hidden_states = residual + hidden_states
1268
-
1269
- # Fully Connected
1270
- residual = hidden_states
1271
- hidden_states = self.post_attention_layernorm(hidden_states)
1272
- hidden_states = self.mlp(hidden_states)
1273
- hidden_states = residual + hidden_states
1274
-
1275
- outputs = (hidden_states,)
1276
-
1277
- if output_attentions:
1278
- outputs += (self_attn_weights,)
1279
-
1280
- if use_cache:
1281
- outputs += (present_key_value,)
1282
-
1283
- return outputs
1284
-
1285
-
1286
- DeepseekV2_START_DOCSTRING = r"""
1287
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1288
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1289
- etc.)
1290
-
1291
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1292
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1293
- and behavior.
1294
-
1295
- Parameters:
1296
- config ([`DeepseekV2Config`]):
1297
- Model configuration class with all the parameters of the model. Initializing with a config file does not
1298
- load the weights associated with the model, only the configuration. Check out the
1299
- [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1300
- """
1301
-
1302
-
1303
- @add_start_docstrings(
1304
- "The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
1305
- DeepseekV2_START_DOCSTRING,
1306
- )
1307
- class DeepseekV2PreTrainedModel(PreTrainedModel):
1308
- config_class = DeepseekV2Config
1309
- base_model_prefix = "model"
1310
- supports_gradient_checkpointing = True
1311
- _no_split_modules = ["DeepseekV2DecoderLayer"]
1312
- _skip_keys_device_placement = "past_key_values"
1313
- _supports_flash_attn_2 = True
1314
- _supports_cache_class = True
1315
-
1316
- def _init_weights(self, module):
1317
- std = self.config.initializer_range
1318
- if isinstance(module, nn.Linear):
1319
- module.weight.data.normal_(mean=0.0, std=std)
1320
- if module.bias is not None:
1321
- module.bias.data.zero_()
1322
- elif isinstance(module, nn.Embedding):
1323
- module.weight.data.normal_(mean=0.0, std=std)
1324
- if module.padding_idx is not None:
1325
- module.weight.data[module.padding_idx].zero_()
1326
-
1327
-
1328
- DeepseekV2_INPUTS_DOCSTRING = r"""
1329
- Args:
1330
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1331
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1332
- it.
1333
-
1334
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1335
- [`PreTrainedTokenizer.__call__`] for details.
1336
-
1337
- [What are input IDs?](../glossary#input-ids)
1338
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1339
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1340
-
1341
- - 1 for tokens that are **not masked**,
1342
- - 0 for tokens that are **masked**.
1343
-
1344
- [What are attention masks?](../glossary#attention-mask)
1345
-
1346
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1347
- [`PreTrainedTokenizer.__call__`] for details.
1348
-
1349
- If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
1350
- `past_key_values`).
1351
-
1352
- If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1353
- and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1354
- information on the default strategy.
1355
-
1356
- - 1 indicates the head is **not masked**,
1357
- - 0 indicates the head is **masked**.
1358
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1359
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1360
- config.n_positions - 1]`.
1361
-
1362
- [What are position IDs?](../glossary#position-ids)
1363
- past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1364
- Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1365
- blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1366
- returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1367
-
1368
- Two formats are allowed:
1369
- - a [`~cache_utils.Cache`] instance;
1370
- - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1371
- shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1372
- cache format.
1373
-
1374
- The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1375
- legacy cache format will be returned.
1376
-
1377
- If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1378
- have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1379
- of shape `(batch_size, sequence_length)`.
1380
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1381
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1382
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1383
- model's internal embedding lookup matrix.
1384
- use_cache (`bool`, *optional*):
1385
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1386
- `past_key_values`).
1387
- output_attentions (`bool`, *optional*):
1388
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1389
- tensors for more detail.
1390
- output_hidden_states (`bool`, *optional*):
1391
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1392
- more detail.
1393
- return_dict (`bool`, *optional*):
1394
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1395
- """
1396
-
1397
-
1398
- @add_start_docstrings(
1399
- "The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
1400
- DeepseekV2_START_DOCSTRING,
1401
- )
1402
- class DeepseekV2Model(DeepseekV2PreTrainedModel):
1403
- """
1404
- Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV2DecoderLayer`]
1405
-
1406
- Args:
1407
- config: DeepseekV2Config
1408
- """
1409
-
1410
- def __init__(self, config: DeepseekV2Config):
1411
- super().__init__(config)
1412
- self.padding_idx = config.pad_token_id
1413
- self.vocab_size = config.vocab_size
1414
-
1415
- self.embed_tokens = nn.Embedding(
1416
- config.vocab_size, config.hidden_size, self.padding_idx
1417
- )
1418
- self.layers = nn.ModuleList(
1419
- [
1420
- DeepseekV2DecoderLayer(config, layer_idx)
1421
- for layer_idx in range(config.num_hidden_layers)
1422
- ]
1423
- )
1424
- self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
1425
- self.norm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1426
-
1427
- self.gradient_checkpointing = False
1428
- # Initialize weights and apply final processing
1429
- self.post_init()
1430
-
1431
- def get_input_embeddings(self):
1432
- return self.embed_tokens
1433
-
1434
- def set_input_embeddings(self, value):
1435
- self.embed_tokens = value
1436
-
1437
- @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
1438
- def forward(
1439
- self,
1440
- input_ids: torch.LongTensor = None,
1441
- attention_mask: Optional[torch.Tensor] = None,
1442
- position_ids: Optional[torch.LongTensor] = None,
1443
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1444
- inputs_embeds: Optional[torch.FloatTensor] = None,
1445
- use_cache: Optional[bool] = None,
1446
- output_attentions: Optional[bool] = None,
1447
- output_hidden_states: Optional[bool] = None,
1448
- return_dict: Optional[bool] = None,
1449
- ) -> Union[Tuple, BaseModelOutputWithPast]:
1450
- output_attentions = (
1451
- output_attentions
1452
- if output_attentions is not None
1453
- else self.config.output_attentions
1454
- )
1455
- output_hidden_states = (
1456
- output_hidden_states
1457
- if output_hidden_states is not None
1458
- else self.config.output_hidden_states
1459
- )
1460
- use_cache = use_cache if use_cache is not None else self.config.use_cache
1461
-
1462
- return_dict = (
1463
- return_dict if return_dict is not None else self.config.use_return_dict
1464
- )
1465
-
1466
- # retrieve input_ids and inputs_embeds
1467
- if input_ids is not None and inputs_embeds is not None:
1468
- raise ValueError(
1469
- "You cannot specify both input_ids and inputs_embeds at the same time"
1470
- )
1471
- elif input_ids is not None:
1472
- batch_size, seq_length = input_ids.shape[:2]
1473
- elif inputs_embeds is not None:
1474
- batch_size, seq_length = inputs_embeds.shape[:2]
1475
- else:
1476
- raise ValueError("You have to specify either input_ids or inputs_embeds")
1477
-
1478
- if self.gradient_checkpointing and self.training:
1479
- if use_cache:
1480
- logger.warning_once(
1481
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
1482
- )
1483
- use_cache = False
1484
-
1485
- past_key_values_length = 0
1486
- if use_cache:
1487
- use_legacy_cache = not isinstance(past_key_values, Cache)
1488
- if use_legacy_cache:
1489
- past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1490
- past_key_values_length = past_key_values.get_usable_length(seq_length)
1491
-
1492
- if position_ids is None:
1493
- device = input_ids.device if input_ids is not None else inputs_embeds.device
1494
- position_ids = torch.arange(
1495
- past_key_values_length,
1496
- seq_length + past_key_values_length,
1497
- dtype=torch.long,
1498
- device=device,
1499
- )
1500
- position_ids = position_ids.unsqueeze(0)
1501
-
1502
- if inputs_embeds is None:
1503
- inputs_embeds = self.embed_tokens(input_ids)
1504
-
1505
- if self._use_flash_attention_2:
1506
- # 2d mask is passed through the layers
1507
- attention_mask = (
1508
- attention_mask
1509
- if (attention_mask is not None and 0 in attention_mask)
1510
- else None
1511
- )
1512
- else:
1513
- # 4d mask is passed through the layers
1514
- attention_mask = _prepare_4d_causal_attention_mask(
1515
- attention_mask,
1516
- (batch_size, seq_length),
1517
- inputs_embeds,
1518
- past_key_values_length,
1519
- )
1520
-
1521
- # embed positions
1522
- hidden_states = inputs_embeds
1523
-
1524
- # decoder layers
1525
- all_hidden_states = () if output_hidden_states else None
1526
- all_self_attns = () if output_attentions else None
1527
- next_decoder_cache = None
1528
-
1529
- for decoder_layer in self.layers:
1530
- if output_hidden_states:
1531
- all_hidden_states += (hidden_states,)
1532
-
1533
- if self.gradient_checkpointing and self.training:
1534
- layer_outputs = self._gradient_checkpointing_func(
1535
- decoder_layer.__call__,
1536
- hidden_states,
1537
- attention_mask,
1538
- position_ids,
1539
- past_key_values,
1540
- output_attentions,
1541
- use_cache,
1542
- )
1543
- else:
1544
- layer_outputs = decoder_layer(
1545
- hidden_states,
1546
- attention_mask=attention_mask,
1547
- position_ids=position_ids,
1548
- past_key_value=past_key_values,
1549
- output_attentions=output_attentions,
1550
- use_cache=use_cache,
1551
- )
1552
-
1553
- hidden_states = layer_outputs[0]
1554
-
1555
- if use_cache:
1556
- next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1557
-
1558
- if output_attentions:
1559
- all_self_attns += (layer_outputs[1],)
1560
-
1561
- hidden_states = self.norm(hidden_states)
1562
-
1563
- # add hidden states from the last decoder layer
1564
- if output_hidden_states:
1565
- all_hidden_states += (hidden_states,)
1566
-
1567
- next_cache = None
1568
- if use_cache:
1569
- next_cache = (
1570
- next_decoder_cache.to_legacy_cache()
1571
- if use_legacy_cache
1572
- else next_decoder_cache
1573
- )
1574
- if not return_dict:
1575
- return tuple(
1576
- v
1577
- for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
1578
- if v is not None
1579
- )
1580
- return BaseModelOutputWithPast(
1581
- last_hidden_state=hidden_states,
1582
- past_key_values=next_cache,
1583
- hidden_states=all_hidden_states,
1584
- attentions=all_self_attns,
1585
- )
1586
-
1587
-
1588
- class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel):
1589
- _tied_weights_keys = ["lm_head.weight"]
1590
-
1591
- def __init__(self, config):
1592
- super().__init__(config)
1593
- self.model = DeepseekV2Model(config)
1594
- self.vocab_size = config.vocab_size
1595
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1596
-
1597
- # Initialize weights and apply final processing
1598
- self.post_init()
1599
-
1600
- def get_input_embeddings(self):
1601
- return self.model.embed_tokens
1602
-
1603
- def set_input_embeddings(self, value):
1604
- self.model.embed_tokens = value
1605
-
1606
- def get_output_embeddings(self):
1607
- return self.lm_head
1608
-
1609
- def set_output_embeddings(self, new_embeddings):
1610
- self.lm_head = new_embeddings
1611
-
1612
- def set_decoder(self, decoder):
1613
- self.model = decoder
1614
-
1615
- def get_decoder(self):
1616
- return self.model
1617
-
1618
- @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
1619
- @replace_return_docstrings(
1620
- output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
1621
- )
1622
- def forward(
1623
- self,
1624
- input_ids: torch.LongTensor = None,
1625
- attention_mask: Optional[torch.Tensor] = None,
1626
- position_ids: Optional[torch.LongTensor] = None,
1627
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1628
- inputs_embeds: Optional[torch.FloatTensor] = None,
1629
- labels: Optional[torch.LongTensor] = None,
1630
- use_cache: Optional[bool] = None,
1631
- output_attentions: Optional[bool] = None,
1632
- output_hidden_states: Optional[bool] = None,
1633
- return_dict: Optional[bool] = None,
1634
- ) -> Union[Tuple, CausalLMOutputWithPast]:
1635
- r"""
1636
- Args:
1637
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1638
- Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
1639
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1640
- (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
1641
-
1642
- Returns:
1643
-
1644
- Example:
1645
-
1646
- ```python
1647
- >>> from transformers import AutoTokenizer, DeepseekV2ForCausalLM
1648
-
1649
- >>> model = DeepseekV2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1650
- >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1651
-
1652
- >>> prompt = "Hey, are you conscious? Can you talk to me?"
1653
- >>> inputs = tokenizer(prompt, return_tensors="pt")
1654
-
1655
- >>> # Generate
1656
- >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1657
- >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1658
- "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1659
- ```"""
1660
- output_attentions = (
1661
- output_attentions
1662
- if output_attentions is not None
1663
- else self.config.output_attentions
1664
- )
1665
- output_hidden_states = (
1666
- output_hidden_states
1667
- if output_hidden_states is not None
1668
- else self.config.output_hidden_states
1669
- )
1670
- return_dict = (
1671
- return_dict if return_dict is not None else self.config.use_return_dict
1672
- )
1673
-
1674
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1675
- outputs = self.model(
1676
- input_ids=input_ids,
1677
- attention_mask=attention_mask,
1678
- position_ids=position_ids,
1679
- past_key_values=past_key_values,
1680
- inputs_embeds=inputs_embeds,
1681
- use_cache=use_cache,
1682
- output_attentions=output_attentions,
1683
- output_hidden_states=output_hidden_states,
1684
- return_dict=return_dict,
1685
- )
1686
-
1687
- hidden_states = outputs[0]
1688
- logits = self.lm_head(hidden_states)
1689
- logits = logits.float()
1690
-
1691
- loss = None
1692
- if labels is not None:
1693
- # Shift so that tokens < n predict n
1694
- shift_logits = logits[..., :-1, :].contiguous()
1695
- shift_labels = labels[..., 1:].contiguous()
1696
- # Flatten the tokens
1697
- loss_fct = CrossEntropyLoss()
1698
- shift_logits = shift_logits.view(-1, self.config.vocab_size)
1699
- shift_labels = shift_labels.view(-1)
1700
- # Enable model parallelism
1701
- shift_labels = shift_labels.to(shift_logits.device)
1702
- loss = loss_fct(shift_logits, shift_labels)
1703
-
1704
- if not return_dict:
1705
- output = (logits,) + outputs[1:]
1706
- return (loss,) + output if loss is not None else output
1707
-
1708
- return CausalLMOutputWithPast(
1709
- loss=loss,
1710
- logits=logits,
1711
- past_key_values=outputs.past_key_values,
1712
- hidden_states=outputs.hidden_states,
1713
- attentions=outputs.attentions,
1714
- )
1715
-
1716
- def prepare_inputs_for_generation(
1717
- self,
1718
- input_ids,
1719
- past_key_values=None,
1720
- attention_mask=None,
1721
- inputs_embeds=None,
1722
- **kwargs,
1723
- ):
1724
- if past_key_values is not None:
1725
- if isinstance(past_key_values, Cache):
1726
- cache_length = past_key_values.get_seq_length()
1727
- past_length = past_key_values.seen_tokens
1728
- max_cache_length = past_key_values.get_max_length()
1729
- else:
1730
- cache_length = past_length = past_key_values[0][0].shape[2]
1731
- max_cache_length = None
1732
-
1733
- # Keep only the unprocessed tokens:
1734
- # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1735
- # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
1736
- # input)
1737
- if (
1738
- attention_mask is not None
1739
- and attention_mask.shape[1] > input_ids.shape[1]
1740
- ):
1741
- input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1742
- # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1743
- # input_ids based on the past_length.
1744
- elif past_length < input_ids.shape[1]:
1745
- input_ids = input_ids[:, past_length:]
1746
- # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1747
-
1748
- # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1749
- if (
1750
- max_cache_length is not None
1751
- and attention_mask is not None
1752
- and cache_length + input_ids.shape[1] > max_cache_length
1753
- ):
1754
- attention_mask = attention_mask[:, -max_cache_length:]
1755
-
1756
- position_ids = kwargs.get("position_ids", None)
1757
- if attention_mask is not None and position_ids is None:
1758
- # create position_ids on the fly for batch generation
1759
- position_ids = attention_mask.long().cumsum(-1) - 1
1760
- position_ids.masked_fill_(attention_mask == 0, 1)
1761
- if past_key_values:
1762
- position_ids = position_ids[:, -input_ids.shape[1] :]
1763
-
1764
- # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1765
- if inputs_embeds is not None and past_key_values is None:
1766
- model_inputs = {"inputs_embeds": inputs_embeds}
1767
- else:
1768
- model_inputs = {"input_ids": input_ids}
1769
-
1770
- model_inputs.update(
1771
- {
1772
- "position_ids": position_ids,
1773
- "past_key_values": past_key_values,
1774
- "use_cache": kwargs.get("use_cache"),
1775
- "attention_mask": attention_mask,
1776
- }
1777
- )
1778
- return model_inputs
1779
-
1780
- @staticmethod
1781
- def _reorder_cache(past_key_values, beam_idx):
1782
- reordered_past = ()
1783
- for layer_past in past_key_values:
1784
- reordered_past += (
1785
- tuple(
1786
- past_state.index_select(0, beam_idx.to(past_state.device))
1787
- for past_state in layer_past
1788
- ),
1789
- )
1790
- return reordered_past
1791
-
1792
-
1793
- @add_start_docstrings(
1794
- """
1795
- The DeepseekV2 Model transformer with a sequence classification head on top (linear layer).
1796
-
1797
- [`DeepseekV2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1798
- (e.g. GPT-2) do.
1799
-
1800
- Since it does classification on the last token, it requires to know the position of the last token. If a
1801
- `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1802
- no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1803
- padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1804
- each row of the batch).
1805
- """,
1806
- DeepseekV2_START_DOCSTRING,
1807
- )
1808
- class DeepseekV2ForSequenceClassification(DeepseekV2PreTrainedModel):
1809
- def __init__(self, config):
1810
- super().__init__(config)
1811
- self.num_labels = config.num_labels
1812
- self.model = DeepseekV2Model(config)
1813
- self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1814
-
1815
- # Initialize weights and apply final processing
1816
- self.post_init()
1817
-
1818
- def get_input_embeddings(self):
1819
- return self.model.embed_tokens
1820
-
1821
- def set_input_embeddings(self, value):
1822
- self.model.embed_tokens = value
1823
-
1824
- @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
1825
- def forward(
1826
- self,
1827
- input_ids: torch.LongTensor = None,
1828
- attention_mask: Optional[torch.Tensor] = None,
1829
- position_ids: Optional[torch.LongTensor] = None,
1830
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1831
- inputs_embeds: Optional[torch.FloatTensor] = None,
1832
- labels: Optional[torch.LongTensor] = None,
1833
- use_cache: Optional[bool] = None,
1834
- output_attentions: Optional[bool] = None,
1835
- output_hidden_states: Optional[bool] = None,
1836
- return_dict: Optional[bool] = None,
1837
- ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1838
- r"""
1839
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1840
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
1841
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1842
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1843
- """
1844
- return_dict = (
1845
- return_dict if return_dict is not None else self.config.use_return_dict
1846
- )
1847
-
1848
- transformer_outputs = self.model(
1849
- input_ids,
1850
- attention_mask=attention_mask,
1851
- position_ids=position_ids,
1852
- past_key_values=past_key_values,
1853
- inputs_embeds=inputs_embeds,
1854
- use_cache=use_cache,
1855
- output_attentions=output_attentions,
1856
- output_hidden_states=output_hidden_states,
1857
- return_dict=return_dict,
1858
- )
1859
- hidden_states = transformer_outputs[0]
1860
- logits = self.score(hidden_states)
1861
-
1862
- if input_ids is not None:
1863
- batch_size = input_ids.shape[0]
1864
- else:
1865
- batch_size = inputs_embeds.shape[0]
1866
-
1867
- if self.config.pad_token_id is None and batch_size != 1:
1868
- raise ValueError(
1869
- "Cannot handle batch sizes > 1 if no padding token is defined."
1870
- )
1871
- if self.config.pad_token_id is None:
1872
- sequence_lengths = -1
1873
- else:
1874
- if input_ids is not None:
1875
- sequence_lengths = (
1876
- torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1877
- ).to(logits.device)
1878
- else:
1879
- sequence_lengths = -1
1880
-
1881
- pooled_logits = logits[
1882
- torch.arange(batch_size, device=logits.device), sequence_lengths
1883
- ]
1884
-
1885
- loss = None
1886
- if labels is not None:
1887
- labels = labels.to(logits.device)
1888
- if self.config.problem_type is None:
1889
- if self.num_labels == 1:
1890
- self.config.problem_type = "regression"
1891
- elif self.num_labels > 1 and (
1892
- labels.dtype == torch.long or labels.dtype == torch.int
1893
- ):
1894
- self.config.problem_type = "single_label_classification"
1895
- else:
1896
- self.config.problem_type = "multi_label_classification"
1897
-
1898
- if self.config.problem_type == "regression":
1899
- loss_fct = MSELoss()
1900
- if self.num_labels == 1:
1901
- loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1902
- else:
1903
- loss = loss_fct(pooled_logits, labels)
1904
- elif self.config.problem_type == "single_label_classification":
1905
- loss_fct = CrossEntropyLoss()
1906
- loss = loss_fct(
1907
- pooled_logits.view(-1, self.num_labels), labels.view(-1)
1908
- )
1909
- elif self.config.problem_type == "multi_label_classification":
1910
- loss_fct = BCEWithLogitsLoss()
1911
- loss = loss_fct(pooled_logits, labels)
1912
- if not return_dict:
1913
- output = (pooled_logits,) + transformer_outputs[1:]
1914
- return ((loss,) + output) if loss is not None else output
1915
-
1916
- return SequenceClassifierOutputWithPast(
1917
- loss=loss,
1918
- logits=pooled_logits,
1919
- past_key_values=transformer_outputs.past_key_values,
1920
- hidden_states=transformer_outputs.hidden_states,
1921
- attentions=transformer_outputs.attentions,
1922
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
special_tokens_map.json DELETED
@@ -1,23 +0,0 @@
1
- {
2
- "bos_token": {
3
- "content": "<|begin▁of▁sentence|>",
4
- "lstrip": false,
5
- "normalized": true,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "eos_token": {
10
- "content": "<|end▁of▁sentence|>",
11
- "lstrip": false,
12
- "normalized": true,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "pad_token": {
17
- "content": "<|end▁of▁sentence|>",
18
- "lstrip": false,
19
- "normalized": true,
20
- "rstrip": false,
21
- "single_word": false
22
- }
23
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tokenizer.json DELETED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json DELETED
@@ -1,162 +0,0 @@
1
- {
2
- "add_bos_token": true,
3
- "add_eos_token": false,
4
- "add_prefix_space": null,
5
- "added_tokens_decoder": {
6
- "100000": {
7
- "content": "<|begin▁of▁sentence|>",
8
- "lstrip": false,
9
- "normalized": true,
10
- "rstrip": false,
11
- "single_word": false,
12
- "special": true
13
- },
14
- "100001": {
15
- "content": "<|end▁of▁sentence|>",
16
- "lstrip": false,
17
- "normalized": true,
18
- "rstrip": false,
19
- "single_word": false,
20
- "special": true
21
- },
22
- "100002": {
23
- "content": "<|fim▁hole|>",
24
- "lstrip": false,
25
- "normalized": true,
26
- "rstrip": false,
27
- "single_word": false,
28
- "special": false
29
- },
30
- "100003": {
31
- "content": "<|fim▁begin|>",
32
- "lstrip": false,
33
- "normalized": true,
34
- "rstrip": false,
35
- "single_word": false,
36
- "special": false
37
- },
38
- "100004": {
39
- "content": "<|fim▁end|>",
40
- "lstrip": false,
41
- "normalized": true,
42
- "rstrip": false,
43
- "single_word": false,
44
- "special": false
45
- },
46
- "100005": {
47
- "content": "<|completion|>",
48
- "lstrip": false,
49
- "normalized": true,
50
- "rstrip": false,
51
- "single_word": false,
52
- "special": false
53
- },
54
- "100006": {
55
- "content": "<|User|>",
56
- "lstrip": false,
57
- "normalized": true,
58
- "rstrip": false,
59
- "single_word": false,
60
- "special": false
61
- },
62
- "100007": {
63
- "content": "<|Assistant|>",
64
- "lstrip": false,
65
- "normalized": true,
66
- "rstrip": false,
67
- "single_word": false,
68
- "special": false
69
- },
70
- "100008": {
71
- "content": "<|EOT|>",
72
- "lstrip": false,
73
- "normalized": true,
74
- "rstrip": false,
75
- "single_word": false,
76
- "special": true
77
- },
78
- "100009": {
79
- "content": "<|tool▁calls▁begin|>",
80
- "lstrip": false,
81
- "normalized": true,
82
- "rstrip": false,
83
- "single_word": false,
84
- "special": false
85
- },
86
- "100010": {
87
- "content": "<|tool▁calls▁end|>",
88
- "lstrip": false,
89
- "normalized": true,
90
- "rstrip": false,
91
- "single_word": false,
92
- "special": false
93
- },
94
- "100011": {
95
- "content": "<|tool▁call▁begin|>",
96
- "lstrip": false,
97
- "normalized": true,
98
- "rstrip": false,
99
- "single_word": false,
100
- "special": false
101
- },
102
- "100012": {
103
- "content": "<|tool▁call▁end|>",
104
- "lstrip": false,
105
- "normalized": true,
106
- "rstrip": false,
107
- "single_word": false,
108
- "special": false
109
- },
110
- "100013": {
111
- "content": "<|tool▁outputs▁begin|>",
112
- "lstrip": false,
113
- "normalized": true,
114
- "rstrip": false,
115
- "single_word": false,
116
- "special": false
117
- },
118
- "100014": {
119
- "content": "<|tool▁outputs▁end|>",
120
- "lstrip": false,
121
- "normalized": true,
122
- "rstrip": false,
123
- "single_word": false,
124
- "special": false
125
- },
126
- "100015": {
127
- "content": "<|tool▁output▁begin|>",
128
- "lstrip": false,
129
- "normalized": true,
130
- "rstrip": false,
131
- "single_word": false,
132
- "special": false
133
- },
134
- "100016": {
135
- "content": "<|tool▁output▁end|>",
136
- "lstrip": false,
137
- "normalized": true,
138
- "rstrip": false,
139
- "single_word": false,
140
- "special": false
141
- },
142
- "100017": {
143
- "content": "<|tool▁sep|>",
144
- "lstrip": false,
145
- "normalized": true,
146
- "rstrip": false,
147
- "single_word": false,
148
- "special": false
149
- }
150
- },
151
- "bos_token": "<|begin▁of▁sentence|>",
152
- "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %} {%- if message['role'] == 'system' %} {% set ns.system_prompt = message['content'] %} {%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %} {%- if message['role'] == 'user' %} {%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}} {%- endif %} {%- if message['role'] == 'assistant' and message['content'] is none %} {%- set ns.is_tool = false -%} {%- for tool in message['tool_calls']%} {%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}} {%- set ns.is_first = true -%} {%- else %}{{'\\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}} {%- endif %} {%- endfor %} {%- endif %} {%- if message['role'] == 'assistant' and message['content'] is not none %} {%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}} {%- set ns.is_tool = false -%} {%- else %}{{'<|Assistant|>' + message['content'] + '<|end▁of▁sentence|>'}} {%- endif %} {%- endif %} {%- if message['role'] == 'tool' %} {%- set ns.is_tool = true -%} {%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}} {%- set ns.is_output_first = false %} {%- else %}{{'\\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}} {%- endif %} {%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|>'}}{% endif %}",
153
- "clean_up_tokenization_spaces": false,
154
- "eos_token": "<|end▁of▁sentence|>",
155
- "legacy": true,
156
- "model_max_length": 16384,
157
- "pad_token": "<|end▁of▁sentence|>",
158
- "sp_model_kwargs": {},
159
- "tokenizer_class": "LlamaTokenizer",
160
- "unk_token": null,
161
- "use_default_system_prompt": false
162
- }