metadata
base_model: macadeliccc/Samantha-Qwen-2-7B
datasets:
- macadeliccc/opus_samantha
- HuggingfaceH4/ultrachat_200k
- teknium/OpenHermes-2.5
- Sao10K/Claude-3-Opus-Instruct-15K
language:
- en
- zh
license: apache-2.0
tags:
- mlx
mlx-community/Samantha-Qwen-2-7B-4bit
The Model mlx-community/Samantha-Qwen-2-7B-4bit was converted to MLX format from macadeliccc/Samantha-Qwen-2-7B using mlx-lm version 0.19.0.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Samantha-Qwen-2-7B-4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)