katopz's picture
Upload folder using huggingface_hub
b4bd212 verified
metadata
language:
  - multilingual
  - af
  - am
  - ar
  - as
  - az
  - be
  - bg
  - bn
  - br
  - bs
  - ca
  - cs
  - cy
  - da
  - de
  - el
  - en
  - eo
  - es
  - et
  - eu
  - fa
  - fi
  - fr
  - fy
  - ga
  - gd
  - gl
  - gu
  - ha
  - he
  - hi
  - hr
  - hu
  - hy
  - id
  - is
  - it
  - ja
  - jv
  - ka
  - kk
  - km
  - kn
  - ko
  - ku
  - ky
  - la
  - lo
  - lt
  - lv
  - mg
  - mk
  - ml
  - mn
  - mr
  - ms
  - my
  - ne
  - nl
  - 'no'
  - om
  - or
  - pa
  - pl
  - ps
  - pt
  - ro
  - ru
  - sa
  - sd
  - si
  - sk
  - sl
  - so
  - sq
  - sr
  - su
  - sv
  - sw
  - ta
  - te
  - th
  - tl
  - tr
  - ug
  - uk
  - ur
  - uz
  - vi
  - xh
  - yi
  - zh
license: mit
tags:
  - mteb
  - Sentence Transformers
  - sentence-similarity
  - feature-extraction
  - sentence-transformers
  - mlx
model-index:
  - name: multilingual-e5-large
    results:
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonCounterfactualClassification (en)
          type: mteb/amazon_counterfactual
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 79.05970149253731
          - type: ap
            value: 43.486574390835635
          - type: f1
            value: 73.32700092140148
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonCounterfactualClassification (de)
          type: mteb/amazon_counterfactual
          config: de
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 71.22055674518201
          - type: ap
            value: 81.55756710830498
          - type: f1
            value: 69.28271787752661
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonCounterfactualClassification (en-ext)
          type: mteb/amazon_counterfactual
          config: en-ext
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 80.41979010494754
          - type: ap
            value: 29.34879922376344
          - type: f1
            value: 67.62475449011278
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonCounterfactualClassification (ja)
          type: mteb/amazon_counterfactual
          config: ja
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 77.8372591006424
          - type: ap
            value: 26.557560591210738
          - type: f1
            value: 64.96619417368707
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonPolarityClassification
          type: mteb/amazon_polarity
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 93.489875
          - type: ap
            value: 90.98758636917603
          - type: f1
            value: 93.48554819717332
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (en)
          type: mteb/amazon_reviews_multi
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 47.564
          - type: f1
            value: 46.75122173518047
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (de)
          type: mteb/amazon_reviews_multi
          config: de
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 45.400000000000006
          - type: f1
            value: 44.17195682400632
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (es)
          type: mteb/amazon_reviews_multi
          config: es
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 43.068
          - type: f1
            value: 42.38155696855596
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (fr)
          type: mteb/amazon_reviews_multi
          config: fr
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 41.89
          - type: f1
            value: 40.84407321682663
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (ja)
          type: mteb/amazon_reviews_multi
          config: ja
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 40.120000000000005
          - type: f1
            value: 39.522976223819114
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (zh)
          type: mteb/amazon_reviews_multi
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 38.832
          - type: f1
            value: 38.0392533394713
      - task:
          type: Retrieval
        dataset:
          name: MTEB ArguAna
          type: arguana
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 30.725
          - type: map_at_10
            value: 46.055
          - type: map_at_100
            value: 46.900999999999996
          - type: map_at_1000
            value: 46.911
          - type: map_at_3
            value: 41.548
          - type: map_at_5
            value: 44.297
          - type: mrr_at_1
            value: 31.152
          - type: mrr_at_10
            value: 46.231
          - type: mrr_at_100
            value: 47.07
          - type: mrr_at_1000
            value: 47.08
          - type: mrr_at_3
            value: 41.738
          - type: mrr_at_5
            value: 44.468999999999994
          - type: ndcg_at_1
            value: 30.725
          - type: ndcg_at_10
            value: 54.379999999999995
          - type: ndcg_at_100
            value: 58.138
          - type: ndcg_at_1000
            value: 58.389
          - type: ndcg_at_3
            value: 45.156
          - type: ndcg_at_5
            value: 50.123
          - type: precision_at_1
            value: 30.725
          - type: precision_at_10
            value: 8.087
          - type: precision_at_100
            value: 0.9769999999999999
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 18.54
          - type: precision_at_5
            value: 13.542000000000002
          - type: recall_at_1
            value: 30.725
          - type: recall_at_10
            value: 80.868
          - type: recall_at_100
            value: 97.653
          - type: recall_at_1000
            value: 99.57300000000001
          - type: recall_at_3
            value: 55.619
          - type: recall_at_5
            value: 67.71000000000001
      - task:
          type: Clustering
        dataset:
          name: MTEB ArxivClusteringP2P
          type: mteb/arxiv-clustering-p2p
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 44.30960650674069
      - task:
          type: Clustering
        dataset:
          name: MTEB ArxivClusteringS2S
          type: mteb/arxiv-clustering-s2s
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 38.427074197498996
      - task:
          type: Reranking
        dataset:
          name: MTEB AskUbuntuDupQuestions
          type: mteb/askubuntudupquestions-reranking
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 60.28270056031872
          - type: mrr
            value: 74.38332673789738
      - task:
          type: STS
        dataset:
          name: MTEB BIOSSES
          type: mteb/biosses-sts
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 84.05942144105269
          - type: cos_sim_spearman
            value: 82.51212105850809
          - type: euclidean_pearson
            value: 81.95639829909122
          - type: euclidean_spearman
            value: 82.3717564144213
          - type: manhattan_pearson
            value: 81.79273425468256
          - type: manhattan_spearman
            value: 82.20066817871039
      - task:
          type: BitextMining
        dataset:
          name: MTEB BUCC (de-en)
          type: mteb/bucc-bitext-mining
          config: de-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 99.46764091858039
          - type: f1
            value: 99.37717466945023
          - type: precision
            value: 99.33194154488518
          - type: recall
            value: 99.46764091858039
      - task:
          type: BitextMining
        dataset:
          name: MTEB BUCC (fr-en)
          type: mteb/bucc-bitext-mining
          config: fr-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 98.29407880255337
          - type: f1
            value: 98.11248073959938
          - type: precision
            value: 98.02443319392472
          - type: recall
            value: 98.29407880255337
      - task:
          type: BitextMining
        dataset:
          name: MTEB BUCC (ru-en)
          type: mteb/bucc-bitext-mining
          config: ru-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 97.79009352268791
          - type: f1
            value: 97.5176076665512
          - type: precision
            value: 97.38136473848286
          - type: recall
            value: 97.79009352268791
      - task:
          type: BitextMining
        dataset:
          name: MTEB BUCC (zh-en)
          type: mteb/bucc-bitext-mining
          config: zh-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 99.26276987888363
          - type: f1
            value: 99.20133403545726
          - type: precision
            value: 99.17500438827453
          - type: recall
            value: 99.26276987888363
      - task:
          type: Classification
        dataset:
          name: MTEB Banking77Classification
          type: mteb/banking77
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 84.72727272727273
          - type: f1
            value: 84.67672206031433
      - task:
          type: Clustering
        dataset:
          name: MTEB BiorxivClusteringP2P
          type: mteb/biorxiv-clustering-p2p
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 35.34220182511161
      - task:
          type: Clustering
        dataset:
          name: MTEB BiorxivClusteringS2S
          type: mteb/biorxiv-clustering-s2s
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 33.4987096128766
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 25.558249999999997
          - type: map_at_10
            value: 34.44425000000001
          - type: map_at_100
            value: 35.59833333333333
          - type: map_at_1000
            value: 35.706916666666665
          - type: map_at_3
            value: 31.691749999999995
          - type: map_at_5
            value: 33.252916666666664
          - type: mrr_at_1
            value: 30.252666666666666
          - type: mrr_at_10
            value: 38.60675
          - type: mrr_at_100
            value: 39.42666666666666
          - type: mrr_at_1000
            value: 39.48408333333334
          - type: mrr_at_3
            value: 36.17441666666665
          - type: mrr_at_5
            value: 37.56275
          - type: ndcg_at_1
            value: 30.252666666666666
          - type: ndcg_at_10
            value: 39.683
          - type: ndcg_at_100
            value: 44.68541666666667
          - type: ndcg_at_1000
            value: 46.94316666666668
          - type: ndcg_at_3
            value: 34.961749999999995
          - type: ndcg_at_5
            value: 37.215666666666664
          - type: precision_at_1
            value: 30.252666666666666
          - type: precision_at_10
            value: 6.904166666666667
          - type: precision_at_100
            value: 1.0989999999999995
          - type: precision_at_1000
            value: 0.14733333333333334
          - type: precision_at_3
            value: 16.037666666666667
          - type: precision_at_5
            value: 11.413583333333333
          - type: recall_at_1
            value: 25.558249999999997
          - type: recall_at_10
            value: 51.13341666666666
          - type: recall_at_100
            value: 73.08366666666667
          - type: recall_at_1000
            value: 88.79483333333334
          - type: recall_at_3
            value: 37.989083333333326
          - type: recall_at_5
            value: 43.787833333333325
      - task:
          type: Retrieval
        dataset:
          name: MTEB ClimateFEVER
          type: climate-fever
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 10.338
          - type: map_at_10
            value: 18.360000000000003
          - type: map_at_100
            value: 19.942
          - type: map_at_1000
            value: 20.134
          - type: map_at_3
            value: 15.174000000000001
          - type: map_at_5
            value: 16.830000000000002
          - type: mrr_at_1
            value: 23.257
          - type: mrr_at_10
            value: 33.768
          - type: mrr_at_100
            value: 34.707
          - type: mrr_at_1000
            value: 34.766000000000005
          - type: mrr_at_3
            value: 30.977
          - type: mrr_at_5
            value: 32.528
          - type: ndcg_at_1
            value: 23.257
          - type: ndcg_at_10
            value: 25.733
          - type: ndcg_at_100
            value: 32.288
          - type: ndcg_at_1000
            value: 35.992000000000004
          - type: ndcg_at_3
            value: 20.866
          - type: ndcg_at_5
            value: 22.612
          - type: precision_at_1
            value: 23.257
          - type: precision_at_10
            value: 8.124
          - type: precision_at_100
            value: 1.518
          - type: precision_at_1000
            value: 0.219
          - type: precision_at_3
            value: 15.679000000000002
          - type: precision_at_5
            value: 12.117
          - type: recall_at_1
            value: 10.338
          - type: recall_at_10
            value: 31.154
          - type: recall_at_100
            value: 54.161
          - type: recall_at_1000
            value: 75.21900000000001
          - type: recall_at_3
            value: 19.427
          - type: recall_at_5
            value: 24.214
      - task:
          type: Retrieval
        dataset:
          name: MTEB DBPedia
          type: dbpedia-entity
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 8.498
          - type: map_at_10
            value: 19.103
          - type: map_at_100
            value: 27.375
          - type: map_at_1000
            value: 28.981
          - type: map_at_3
            value: 13.764999999999999
          - type: map_at_5
            value: 15.950000000000001
          - type: mrr_at_1
            value: 65.5
          - type: mrr_at_10
            value: 74.53800000000001
          - type: mrr_at_100
            value: 74.71799999999999
          - type: mrr_at_1000
            value: 74.725
          - type: mrr_at_3
            value: 72.792
          - type: mrr_at_5
            value: 73.554
          - type: ndcg_at_1
            value: 53.37499999999999
          - type: ndcg_at_10
            value: 41.286
          - type: ndcg_at_100
            value: 45.972
          - type: ndcg_at_1000
            value: 53.123
          - type: ndcg_at_3
            value: 46.172999999999995
          - type: ndcg_at_5
            value: 43.033
          - type: precision_at_1
            value: 65.5
          - type: precision_at_10
            value: 32.725
          - type: precision_at_100
            value: 10.683
          - type: precision_at_1000
            value: 1.978
          - type: precision_at_3
            value: 50
          - type: precision_at_5
            value: 41.349999999999994
          - type: recall_at_1
            value: 8.498
          - type: recall_at_10
            value: 25.070999999999998
          - type: recall_at_100
            value: 52.383
          - type: recall_at_1000
            value: 74.91499999999999
          - type: recall_at_3
            value: 15.207999999999998
          - type: recall_at_5
            value: 18.563
      - task:
          type: Classification
        dataset:
          name: MTEB EmotionClassification
          type: mteb/emotion
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 46.5
          - type: f1
            value: 41.93833713984145
      - task:
          type: Retrieval
        dataset:
          name: MTEB FEVER
          type: fever
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 67.914
          - type: map_at_10
            value: 78.10000000000001
          - type: map_at_100
            value: 78.333
          - type: map_at_1000
            value: 78.346
          - type: map_at_3
            value: 76.626
          - type: map_at_5
            value: 77.627
          - type: mrr_at_1
            value: 72.74199999999999
          - type: mrr_at_10
            value: 82.414
          - type: mrr_at_100
            value: 82.511
          - type: mrr_at_1000
            value: 82.513
          - type: mrr_at_3
            value: 81.231
          - type: mrr_at_5
            value: 82.065
          - type: ndcg_at_1
            value: 72.74199999999999
          - type: ndcg_at_10
            value: 82.806
          - type: ndcg_at_100
            value: 83.677
          - type: ndcg_at_1000
            value: 83.917
          - type: ndcg_at_3
            value: 80.305
          - type: ndcg_at_5
            value: 81.843
          - type: precision_at_1
            value: 72.74199999999999
          - type: precision_at_10
            value: 10.24
          - type: precision_at_100
            value: 1.089
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 31.268
          - type: precision_at_5
            value: 19.706000000000003
          - type: recall_at_1
            value: 67.914
          - type: recall_at_10
            value: 92.889
          - type: recall_at_100
            value: 96.42699999999999
          - type: recall_at_1000
            value: 97.92
          - type: recall_at_3
            value: 86.21
          - type: recall_at_5
            value: 90.036
      - task:
          type: Retrieval
        dataset:
          name: MTEB FiQA2018
          type: fiqa
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.166
          - type: map_at_10
            value: 35.57
          - type: map_at_100
            value: 37.405
          - type: map_at_1000
            value: 37.564
          - type: map_at_3
            value: 30.379
          - type: map_at_5
            value: 33.324
          - type: mrr_at_1
            value: 43.519000000000005
          - type: mrr_at_10
            value: 51.556000000000004
          - type: mrr_at_100
            value: 52.344
          - type: mrr_at_1000
            value: 52.373999999999995
          - type: mrr_at_3
            value: 48.868
          - type: mrr_at_5
            value: 50.319
          - type: ndcg_at_1
            value: 43.519000000000005
          - type: ndcg_at_10
            value: 43.803
          - type: ndcg_at_100
            value: 50.468999999999994
          - type: ndcg_at_1000
            value: 53.111
          - type: ndcg_at_3
            value: 38.893
          - type: ndcg_at_5
            value: 40.653
          - type: precision_at_1
            value: 43.519000000000005
          - type: precision_at_10
            value: 12.253
          - type: precision_at_100
            value: 1.931
          - type: precision_at_1000
            value: 0.242
          - type: precision_at_3
            value: 25.617
          - type: precision_at_5
            value: 19.383
          - type: recall_at_1
            value: 22.166
          - type: recall_at_10
            value: 51.6
          - type: recall_at_100
            value: 76.574
          - type: recall_at_1000
            value: 92.192
          - type: recall_at_3
            value: 34.477999999999994
          - type: recall_at_5
            value: 41.835
      - task:
          type: Retrieval
        dataset:
          name: MTEB HotpotQA
          type: hotpotqa
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 39.041
          - type: map_at_10
            value: 62.961999999999996
          - type: map_at_100
            value: 63.79899999999999
          - type: map_at_1000
            value: 63.854
          - type: map_at_3
            value: 59.399
          - type: map_at_5
            value: 61.669
          - type: mrr_at_1
            value: 78.082
          - type: mrr_at_10
            value: 84.321
          - type: mrr_at_100
            value: 84.49600000000001
          - type: mrr_at_1000
            value: 84.502
          - type: mrr_at_3
            value: 83.421
          - type: mrr_at_5
            value: 83.977
          - type: ndcg_at_1
            value: 78.082
          - type: ndcg_at_10
            value: 71.229
          - type: ndcg_at_100
            value: 74.10900000000001
          - type: ndcg_at_1000
            value: 75.169
          - type: ndcg_at_3
            value: 66.28699999999999
          - type: ndcg_at_5
            value: 69.084
          - type: precision_at_1
            value: 78.082
          - type: precision_at_10
            value: 14.993
          - type: precision_at_100
            value: 1.7239999999999998
          - type: precision_at_1000
            value: 0.186
          - type: precision_at_3
            value: 42.737
          - type: precision_at_5
            value: 27.843
          - type: recall_at_1
            value: 39.041
          - type: recall_at_10
            value: 74.96300000000001
          - type: recall_at_100
            value: 86.199
          - type: recall_at_1000
            value: 93.228
          - type: recall_at_3
            value: 64.105
          - type: recall_at_5
            value: 69.608
      - task:
          type: Classification
        dataset:
          name: MTEB ImdbClassification
          type: mteb/imdb
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 90.23160000000001
          - type: ap
            value: 85.5674856808308
          - type: f1
            value: 90.18033354786317
      - task:
          type: Retrieval
        dataset:
          name: MTEB MSMARCO
          type: msmarco
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 24.091
          - type: map_at_10
            value: 36.753
          - type: map_at_100
            value: 37.913000000000004
          - type: map_at_1000
            value: 37.958999999999996
          - type: map_at_3
            value: 32.818999999999996
          - type: map_at_5
            value: 35.171
          - type: mrr_at_1
            value: 24.742
          - type: mrr_at_10
            value: 37.285000000000004
          - type: mrr_at_100
            value: 38.391999999999996
          - type: mrr_at_1000
            value: 38.431
          - type: mrr_at_3
            value: 33.440999999999995
          - type: mrr_at_5
            value: 35.75
          - type: ndcg_at_1
            value: 24.742
          - type: ndcg_at_10
            value: 43.698
          - type: ndcg_at_100
            value: 49.145
          - type: ndcg_at_1000
            value: 50.23800000000001
          - type: ndcg_at_3
            value: 35.769
          - type: ndcg_at_5
            value: 39.961999999999996
          - type: precision_at_1
            value: 24.742
          - type: precision_at_10
            value: 6.7989999999999995
          - type: precision_at_100
            value: 0.95
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 15.096000000000002
          - type: precision_at_5
            value: 11.183
          - type: recall_at_1
            value: 24.091
          - type: recall_at_10
            value: 65.068
          - type: recall_at_100
            value: 89.899
          - type: recall_at_1000
            value: 98.16
          - type: recall_at_3
            value: 43.68
          - type: recall_at_5
            value: 53.754999999999995
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPDomainClassification (en)
          type: mteb/mtop_domain
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 93.66621067031465
          - type: f1
            value: 93.49622853272142
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPDomainClassification (de)
          type: mteb/mtop_domain
          config: de
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 91.94702733164272
          - type: f1
            value: 91.17043441745282
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPDomainClassification (es)
          type: mteb/mtop_domain
          config: es
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 92.20146764509674
          - type: f1
            value: 91.98359080555608
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPDomainClassification (fr)
          type: mteb/mtop_domain
          config: fr
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 88.99780770435328
          - type: f1
            value: 89.19746342724068
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPDomainClassification (hi)
          type: mteb/mtop_domain
          config: hi
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 89.78486912871998
          - type: f1
            value: 89.24578823628642
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPDomainClassification (th)
          type: mteb/mtop_domain
          config: th
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 88.74502712477394
          - type: f1
            value: 89.00297573881542
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPIntentClassification (en)
          type: mteb/mtop_intent
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 77.9046967624259
          - type: f1
            value: 59.36787125785957
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPIntentClassification (de)
          type: mteb/mtop_intent
          config: de
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 74.5280360664976
          - type: f1
            value: 57.17723440888718
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPIntentClassification (es)
          type: mteb/mtop_intent
          config: es
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 75.44029352901934
          - type: f1
            value: 54.052855531072964
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPIntentClassification (fr)
          type: mteb/mtop_intent
          config: fr
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 70.5606013153774
          - type: f1
            value: 52.62215934386531
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPIntentClassification (hi)
          type: mteb/mtop_intent
          config: hi
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 73.11581211903908
          - type: f1
            value: 52.341291845645465
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPIntentClassification (th)
          type: mteb/mtop_intent
          config: th
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 74.28933092224233
          - type: f1
            value: 57.07918745504911
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (af)
          type: mteb/amazon_massive_intent
          config: af
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 62.38063214525892
          - type: f1
            value: 59.46463723443009
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (am)
          type: mteb/amazon_massive_intent
          config: am
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 56.06926698049766
          - type: f1
            value: 52.49084283283562
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ar)
          type: mteb/amazon_massive_intent
          config: ar
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 60.74983187626093
          - type: f1
            value: 56.960640620165904
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (az)
          type: mteb/amazon_massive_intent
          config: az
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 64.86550100874243
          - type: f1
            value: 62.47370548140688
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (bn)
          type: mteb/amazon_massive_intent
          config: bn
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 63.971082716879636
          - type: f1
            value: 61.03812421957381
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (cy)
          type: mteb/amazon_massive_intent
          config: cy
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 54.98318762609282
          - type: f1
            value: 51.51207916008392
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (da)
          type: mteb/amazon_massive_intent
          config: da
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 69.45527908540686
          - type: f1
            value: 66.16631905400318
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (de)
          type: mteb/amazon_massive_intent
          config: de
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 69.32750504371216
          - type: f1
            value: 66.16755288646591
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (el)
          type: mteb/amazon_massive_intent
          config: el
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 69.09213180901143
          - type: f1
            value: 66.95654394661507
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (en)
          type: mteb/amazon_massive_intent
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 73.75588433086752
          - type: f1
            value: 71.79973779656923
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (es)
          type: mteb/amazon_massive_intent
          config: es
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 70.49428379287154
          - type: f1
            value: 68.37494379215734
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (fa)
          type: mteb/amazon_massive_intent
          config: fa
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 69.90921318090115
          - type: f1
            value: 66.79517376481645
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (fi)
          type: mteb/amazon_massive_intent
          config: fi
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 70.12104909213181
          - type: f1
            value: 67.29448842879584
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (fr)
          type: mteb/amazon_massive_intent
          config: fr
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 69.34095494283793
          - type: f1
            value: 67.01134288992947
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (he)
          type: mteb/amazon_massive_intent
          config: he
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 67.61264290517822
          - type: f1
            value: 64.68730512660757
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (hi)
          type: mteb/amazon_massive_intent
          config: hi
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 67.79757901815738
          - type: f1
            value: 65.24938539425598
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (hu)
          type: mteb/amazon_massive_intent
          config: hu
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 69.68728984532616
          - type: f1
            value: 67.0487169762553
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (hy)
          type: mteb/amazon_massive_intent
          config: hy
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 62.07464694014795
          - type: f1
            value: 59.183532276789286
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (id)
          type: mteb/amazon_massive_intent
          config: id
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 70.04707464694015
          - type: f1
            value: 67.66829629003848
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (is)
          type: mteb/amazon_massive_intent
          config: is
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 62.42434431741762
          - type: f1
            value: 59.01617226544757
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (it)
          type: mteb/amazon_massive_intent
          config: it
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 70.53127101546738
          - type: f1
            value: 68.10033760906255
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ja)
          type: mteb/amazon_massive_intent
          config: ja
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 72.50504371217215
          - type: f1
            value: 69.74931103158923
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (jv)
          type: mteb/amazon_massive_intent
          config: jv
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 57.91190316072628
          - type: f1
            value: 54.05551136648796
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ka)
          type: mteb/amazon_massive_intent
          config: ka
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 51.78211163416275
          - type: f1
            value: 49.874888544058535
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (km)
          type: mteb/amazon_massive_intent
          config: km
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 47.017484868863484
          - type: f1
            value: 44.53364263352014
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (kn)
          type: mteb/amazon_massive_intent
          config: kn
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 62.16207128446537
          - type: f1
            value: 59.01185692320829
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ko)
          type: mteb/amazon_massive_intent
          config: ko
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 69.42501681237391
          - type: f1
            value: 67.13169450166086
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (lv)
          type: mteb/amazon_massive_intent
          config: lv
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 67.0780094149294
          - type: f1
            value: 64.41720167850707
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ml)
          type: mteb/amazon_massive_intent
          config: ml
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 65.57162071284466
          - type: f1
            value: 62.414138683804424
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (mn)
          type: mteb/amazon_massive_intent
          config: mn
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 61.71149966375252
          - type: f1
            value: 58.594805125087234
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ms)
          type: mteb/amazon_massive_intent
          config: ms
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 66.03900470746471
          - type: f1
            value: 63.87937257883887
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (my)
          type: mteb/amazon_massive_intent
          config: my
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 60.8776059179556
          - type: f1
            value: 57.48587618059131
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (nb)
          type: mteb/amazon_massive_intent
          config: nb
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 69.87895090786819
          - type: f1
            value: 66.8141299430347
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (nl)
          type: mteb/amazon_massive_intent
          config: nl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 70.45057162071285
          - type: f1
            value: 67.46444039673516
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (pl)
          type: mteb/amazon_massive_intent
          config: pl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 71.546738399462
          - type: f1
            value: 68.63640876702655
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (pt)
          type: mteb/amazon_massive_intent
          config: pt
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 70.72965702757229
          - type: f1
            value: 68.54119560379115
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ro)
          type: mteb/amazon_massive_intent
          config: ro
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 68.35574983187625
          - type: f1
            value: 65.88844917691927
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ru)
          type: mteb/amazon_massive_intent
          config: ru
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 71.70477471418964
          - type: f1
            value: 69.19665697061978
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (sl)
          type: mteb/amazon_massive_intent
          config: sl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 67.0880968392737
          - type: f1
            value: 64.76962317666086
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (sq)
          type: mteb/amazon_massive_intent
          config: sq
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 65.18493611297916
          - type: f1
            value: 62.49984559035371
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (sv)
          type: mteb/amazon_massive_intent
          config: sv
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 71.75857431069265
          - type: f1
            value: 69.20053687623418
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (sw)
          type: mteb/amazon_massive_intent
          config: sw
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 58.500336247478145
          - type: f1
            value: 55.2972398687929
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ta)
          type: mteb/amazon_massive_intent
          config: ta
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 62.68997982515132
          - type: f1
            value: 59.36848202755348
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (te)
          type: mteb/amazon_massive_intent
          config: te
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 63.01950235373235
          - type: f1
            value: 60.09351954625423
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (th)
          type: mteb/amazon_massive_intent
          config: th
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 68.29186281102892
          - type: f1
            value: 67.57860496703447
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (tl)
          type: mteb/amazon_massive_intent
          config: tl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 64.77471418964357
          - type: f1
            value: 61.913983147713836
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (tr)
          type: mteb/amazon_massive_intent
          config: tr
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 69.87222595830532
          - type: f1
            value: 66.03679033708141
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ur)
          type: mteb/amazon_massive_intent
          config: ur
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 64.04505716207127
          - type: f1
            value: 61.28569169817908
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (vi)
          type: mteb/amazon_massive_intent
          config: vi
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 69.38466711499663
          - type: f1
            value: 67.20532357036844
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (zh-CN)
          type: mteb/amazon_massive_intent
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 71.12306657700067
          - type: f1
            value: 68.91251226588182
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (zh-TW)
          type: mteb/amazon_massive_intent
          config: zh-TW
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 66.20040349697378
          - type: f1
            value: 66.02657347714175
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (af)
          type: mteb/amazon_massive_scenario
          config: af
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 68.73907195696032
          - type: f1
            value: 66.98484521791418
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (am)
          type: mteb/amazon_massive_scenario
          config: am
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 60.58843308675185
          - type: f1
            value: 58.95591723092005
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ar)
          type: mteb/amazon_massive_scenario
          config: ar
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 66.22730329522528
          - type: f1
            value: 66.0894499712115
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (az)
          type: mteb/amazon_massive_scenario
          config: az
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 66.48285137861465
          - type: f1
            value: 65.21963176785157
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (bn)
          type: mteb/amazon_massive_scenario
          config: bn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 67.74714189643578
          - type: f1
            value: 66.8212192745412
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (cy)
          type: mteb/amazon_massive_scenario
          config: cy
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 59.09213180901143
          - type: f1
            value: 56.70735546356339
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (da)
          type: mteb/amazon_massive_scenario
          config: da
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 75.05716207128448
          - type: f1
            value: 74.8413712365364
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (de)
          type: mteb/amazon_massive_scenario
          config: de
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 74.69737726967047
          - type: f1
            value: 74.7664341963
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (el)
          type: mteb/amazon_massive_scenario
          config: el
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 73.90383322125084
          - type: f1
            value: 73.59201554448323
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (en)
          type: mteb/amazon_massive_scenario
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 77.51176866173503
          - type: f1
            value: 77.46104434577758
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (es)
          type: mteb/amazon_massive_scenario
          config: es
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 74.31069266980496
          - type: f1
            value: 74.61048660675635
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (fa)
          type: mteb/amazon_massive_scenario
          config: fa
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 72.95225285810356
          - type: f1
            value: 72.33160006574627
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (fi)
          type: mteb/amazon_massive_scenario
          config: fi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 73.12373907195696
          - type: f1
            value: 73.20921012557481
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (fr)
          type: mteb/amazon_massive_scenario
          config: fr
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 73.86684599865501
          - type: f1
            value: 73.82348774610831
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (he)
          type: mteb/amazon_massive_scenario
          config: he
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 71.40215198386012
          - type: f1
            value: 71.11945183971858
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (hi)
          type: mteb/amazon_massive_scenario
          config: hi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 72.12844653665098
          - type: f1
            value: 71.34450495911766
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (hu)
          type: mteb/amazon_massive_scenario
          config: hu
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 74.52252858103566
          - type: f1
            value: 73.98878711342999
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (hy)
          type: mteb/amazon_massive_scenario
          config: hy
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 64.93611297915265
          - type: f1
            value: 63.723200467653385
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (id)
          type: mteb/amazon_massive_scenario
          config: id
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 74.11903160726295
          - type: f1
            value: 73.82138439467096
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (is)
          type: mteb/amazon_massive_scenario
          config: is
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 67.15198386012105
          - type: f1
            value: 66.02172193802167
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (it)
          type: mteb/amazon_massive_scenario
          config: it
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 74.32414256893072
          - type: f1
            value: 74.30943421170574
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ja)
          type: mteb/amazon_massive_scenario
          config: ja
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 77.46805648957633
          - type: f1
            value: 77.62808409298209
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (jv)
          type: mteb/amazon_massive_scenario
          config: jv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 63.318762609280434
          - type: f1
            value: 62.094284066075076
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ka)
          type: mteb/amazon_massive_scenario
          config: ka
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 58.34902488231338
          - type: f1
            value: 57.12893860987984
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (km)
          type: mteb/amazon_massive_scenario
          config: km
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 50.88433086751849
          - type: f1
            value: 48.2272350802058
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (kn)
          type: mteb/amazon_massive_scenario
          config: kn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 66.4425016812374
          - type: f1
            value: 64.61463095996173
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ko)
          type: mteb/amazon_massive_scenario
          config: ko
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 75.04707464694015
          - type: f1
            value: 75.05099199098998
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (lv)
          type: mteb/amazon_massive_scenario
          config: lv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 70.50437121721586
          - type: f1
            value: 69.83397721096314
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ml)
          type: mteb/amazon_massive_scenario
          config: ml
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 69.94283792871553
          - type: f1
            value: 68.8704663703913
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (mn)
          type: mteb/amazon_massive_scenario
          config: mn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 64.79488903833222
          - type: f1
            value: 63.615424063345436
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ms)
          type: mteb/amazon_massive_scenario
          config: ms
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 69.88231338264963
          - type: f1
            value: 68.57892302593237
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (my)
          type: mteb/amazon_massive_scenario
          config: my
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 63.248150638870214
          - type: f1
            value: 61.06680605338809
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (nb)
          type: mteb/amazon_massive_scenario
          config: nb
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 74.84196368527236
          - type: f1
            value: 74.52566464968763
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (nl)
          type: mteb/amazon_massive_scenario
          config: nl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 74.8285137861466
          - type: f1
            value: 74.8853197608802
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (pl)
          type: mteb/amazon_massive_scenario
          config: pl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 74.13248150638869
          - type: f1
            value: 74.3982040999179
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (pt)
          type: mteb/amazon_massive_scenario
          config: pt
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 73.49024882313383
          - type: f1
            value: 73.82153848368573
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ro)
          type: mteb/amazon_massive_scenario
          config: ro
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 71.72158708809684
          - type: f1
            value: 71.85049433180541
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ru)
          type: mteb/amazon_massive_scenario
          config: ru
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 75.137861466039
          - type: f1
            value: 75.37628348188467
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (sl)
          type: mteb/amazon_massive_scenario
          config: sl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 71.86953597848016
          - type: f1
            value: 71.87537624521661
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (sq)
          type: mteb/amazon_massive_scenario
          config: sq
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 70.27572293207801
          - type: f1
            value: 68.80017302344231
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (sv)
          type: mteb/amazon_massive_scenario
          config: sv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 76.09952925353059
          - type: f1
            value: 76.07992707688408
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (sw)
          type: mteb/amazon_massive_scenario
          config: sw
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 63.140551445864155
          - type: f1
            value: 61.73855010331415
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ta)
          type: mteb/amazon_massive_scenario
          config: ta
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 66.27774041694687
          - type: f1
            value: 64.83664868894539
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (te)
          type: mteb/amazon_massive_scenario
          config: te
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 66.69468728984533
          - type: f1
            value: 64.76239666920868
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (th)
          type: mteb/amazon_massive_scenario
          config: th
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 73.44653665097512
          - type: f1
            value: 73.14646052013873
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (tl)
          type: mteb/amazon_massive_scenario
          config: tl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 67.71351714862139
          - type: f1
            value: 66.67212180163382
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (tr)
          type: mteb/amazon_massive_scenario
          config: tr
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 73.9946200403497
          - type: f1
            value: 73.87348793725525
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ur)
          type: mteb/amazon_massive_scenario
          config: ur
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 68.15400134498992
          - type: f1
            value: 67.09433241421094
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (vi)
          type: mteb/amazon_massive_scenario
          config: vi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 73.11365164761264
          - type: f1
            value: 73.59502539433753
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (zh-CN)
          type: mteb/amazon_massive_scenario
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 76.82582380632145
          - type: f1
            value: 76.89992945316313
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (zh-TW)
          type: mteb/amazon_massive_scenario
          config: zh-TW
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 71.81237390719569
          - type: f1
            value: 72.36499770986265
      - task:
          type: Clustering
        dataset:
          name: MTEB MedrxivClusteringP2P
          type: mteb/medrxiv-clustering-p2p
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 31.480506569594695
      - task:
          type: Clustering
        dataset:
          name: MTEB MedrxivClusteringS2S
          type: mteb/medrxiv-clustering-s2s
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 29.71252128004552
      - task:
          type: Reranking
        dataset:
          name: MTEB MindSmallReranking
          type: mteb/mind_small
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 31.421396787056548
          - type: mrr
            value: 32.48155274872267
      - task:
          type: Retrieval
        dataset:
          name: MTEB NFCorpus
          type: nfcorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.595
          - type: map_at_10
            value: 12.642000000000001
          - type: map_at_100
            value: 15.726
          - type: map_at_1000
            value: 17.061999999999998
          - type: map_at_3
            value: 9.125
          - type: map_at_5
            value: 10.866000000000001
          - type: mrr_at_1
            value: 43.344
          - type: mrr_at_10
            value: 52.227999999999994
          - type: mrr_at_100
            value: 52.898999999999994
          - type: mrr_at_1000
            value: 52.944
          - type: mrr_at_3
            value: 49.845
          - type: mrr_at_5
            value: 51.115
          - type: ndcg_at_1
            value: 41.949999999999996
          - type: ndcg_at_10
            value: 33.995
          - type: ndcg_at_100
            value: 30.869999999999997
          - type: ndcg_at_1000
            value: 39.487
          - type: ndcg_at_3
            value: 38.903999999999996
          - type: ndcg_at_5
            value: 37.236999999999995
          - type: precision_at_1
            value: 43.344
          - type: precision_at_10
            value: 25.480000000000004
          - type: precision_at_100
            value: 7.672
          - type: precision_at_1000
            value: 2.028
          - type: precision_at_3
            value: 36.636
          - type: precision_at_5
            value: 32.632
          - type: recall_at_1
            value: 5.595
          - type: recall_at_10
            value: 16.466
          - type: recall_at_100
            value: 31.226
          - type: recall_at_1000
            value: 62.778999999999996
          - type: recall_at_3
            value: 9.931
          - type: recall_at_5
            value: 12.884
      - task:
          type: Retrieval
        dataset:
          name: MTEB NQ
          type: nq
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 40.414
          - type: map_at_10
            value: 56.754000000000005
          - type: map_at_100
            value: 57.457
          - type: map_at_1000
            value: 57.477999999999994
          - type: map_at_3
            value: 52.873999999999995
          - type: map_at_5
            value: 55.175
          - type: mrr_at_1
            value: 45.278
          - type: mrr_at_10
            value: 59.192
          - type: mrr_at_100
            value: 59.650000000000006
          - type: mrr_at_1000
            value: 59.665
          - type: mrr_at_3
            value: 56.141
          - type: mrr_at_5
            value: 57.998000000000005
          - type: ndcg_at_1
            value: 45.278
          - type: ndcg_at_10
            value: 64.056
          - type: ndcg_at_100
            value: 66.89
          - type: ndcg_at_1000
            value: 67.364
          - type: ndcg_at_3
            value: 56.97
          - type: ndcg_at_5
            value: 60.719
          - type: precision_at_1
            value: 45.278
          - type: precision_at_10
            value: 9.994
          - type: precision_at_100
            value: 1.165
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 25.512
          - type: precision_at_5
            value: 17.509
          - type: recall_at_1
            value: 40.414
          - type: recall_at_10
            value: 83.596
          - type: recall_at_100
            value: 95.72
          - type: recall_at_1000
            value: 99.24
          - type: recall_at_3
            value: 65.472
          - type: recall_at_5
            value: 74.039
      - task:
          type: Retrieval
        dataset:
          name: MTEB QuoraRetrieval
          type: quora
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 70.352
          - type: map_at_10
            value: 84.369
          - type: map_at_100
            value: 85.02499999999999
          - type: map_at_1000
            value: 85.04
          - type: map_at_3
            value: 81.42399999999999
          - type: map_at_5
            value: 83.279
          - type: mrr_at_1
            value: 81.05
          - type: mrr_at_10
            value: 87.401
          - type: mrr_at_100
            value: 87.504
          - type: mrr_at_1000
            value: 87.505
          - type: mrr_at_3
            value: 86.443
          - type: mrr_at_5
            value: 87.10799999999999
          - type: ndcg_at_1
            value: 81.04
          - type: ndcg_at_10
            value: 88.181
          - type: ndcg_at_100
            value: 89.411
          - type: ndcg_at_1000
            value: 89.507
          - type: ndcg_at_3
            value: 85.28099999999999
          - type: ndcg_at_5
            value: 86.888
          - type: precision_at_1
            value: 81.04
          - type: precision_at_10
            value: 13.406
          - type: precision_at_100
            value: 1.5350000000000001
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 37.31
          - type: precision_at_5
            value: 24.54
          - type: recall_at_1
            value: 70.352
          - type: recall_at_10
            value: 95.358
          - type: recall_at_100
            value: 99.541
          - type: recall_at_1000
            value: 99.984
          - type: recall_at_3
            value: 87.111
          - type: recall_at_5
            value: 91.643
      - task:
          type: Clustering
        dataset:
          name: MTEB RedditClustering
          type: mteb/reddit-clustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 46.54068723291946
      - task:
          type: Clustering
        dataset:
          name: MTEB RedditClusteringP2P
          type: mteb/reddit-clustering-p2p
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 63.216287629895994
      - task:
          type: Retrieval
        dataset:
          name: MTEB SCIDOCS
          type: scidocs
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 4.023000000000001
          - type: map_at_10
            value: 10.071
          - type: map_at_100
            value: 11.892
          - type: map_at_1000
            value: 12.196
          - type: map_at_3
            value: 7.234
          - type: map_at_5
            value: 8.613999999999999
          - type: mrr_at_1
            value: 19.900000000000002
          - type: mrr_at_10
            value: 30.516
          - type: mrr_at_100
            value: 31.656000000000002
          - type: mrr_at_1000
            value: 31.723000000000003
          - type: mrr_at_3
            value: 27.400000000000002
          - type: mrr_at_5
            value: 29.270000000000003
          - type: ndcg_at_1
            value: 19.900000000000002
          - type: ndcg_at_10
            value: 17.474
          - type: ndcg_at_100
            value: 25.020999999999997
          - type: ndcg_at_1000
            value: 30.728
          - type: ndcg_at_3
            value: 16.588
          - type: ndcg_at_5
            value: 14.498
          - type: precision_at_1
            value: 19.900000000000002
          - type: precision_at_10
            value: 9.139999999999999
          - type: precision_at_100
            value: 2.011
          - type: precision_at_1000
            value: 0.33899999999999997
          - type: precision_at_3
            value: 15.667
          - type: precision_at_5
            value: 12.839999999999998
          - type: recall_at_1
            value: 4.023000000000001
          - type: recall_at_10
            value: 18.497
          - type: recall_at_100
            value: 40.8
          - type: recall_at_1000
            value: 68.812
          - type: recall_at_3
            value: 9.508
          - type: recall_at_5
            value: 12.983
      - task:
          type: STS
        dataset:
          name: MTEB SICK-R
          type: mteb/sickr-sts
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 83.967008785134
          - type: cos_sim_spearman
            value: 80.23142141101837
          - type: euclidean_pearson
            value: 81.20166064704539
          - type: euclidean_spearman
            value: 80.18961335654585
          - type: manhattan_pearson
            value: 81.13925443187625
          - type: manhattan_spearman
            value: 80.07948723044424
      - task:
          type: STS
        dataset:
          name: MTEB STS12
          type: mteb/sts12-sts
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 86.94262461316023
          - type: cos_sim_spearman
            value: 80.01596278563865
          - type: euclidean_pearson
            value: 83.80799622922581
          - type: euclidean_spearman
            value: 79.94984954947103
          - type: manhattan_pearson
            value: 83.68473841756281
          - type: manhattan_spearman
            value: 79.84990707951822
      - task:
          type: STS
        dataset:
          name: MTEB STS13
          type: mteb/sts13-sts
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 80.57346443146068
          - type: cos_sim_spearman
            value: 81.54689837570866
          - type: euclidean_pearson
            value: 81.10909881516007
          - type: euclidean_spearman
            value: 81.56746243261762
          - type: manhattan_pearson
            value: 80.87076036186582
          - type: manhattan_spearman
            value: 81.33074987964402
      - task:
          type: STS
        dataset:
          name: MTEB STS14
          type: mteb/sts14-sts
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 79.54733787179849
          - type: cos_sim_spearman
            value: 77.72202105610411
          - type: euclidean_pearson
            value: 78.9043595478849
          - type: euclidean_spearman
            value: 77.93422804309435
          - type: manhattan_pearson
            value: 78.58115121621368
          - type: manhattan_spearman
            value: 77.62508135122033
      - task:
          type: STS
        dataset:
          name: MTEB STS15
          type: mteb/sts15-sts
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 88.59880017237558
          - type: cos_sim_spearman
            value: 89.31088630824758
          - type: euclidean_pearson
            value: 88.47069261564656
          - type: euclidean_spearman
            value: 89.33581971465233
          - type: manhattan_pearson
            value: 88.40774264100956
          - type: manhattan_spearman
            value: 89.28657485627835
      - task:
          type: STS
        dataset:
          name: MTEB STS16
          type: mteb/sts16-sts
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 84.08055117917084
          - type: cos_sim_spearman
            value: 85.78491813080304
          - type: euclidean_pearson
            value: 84.99329155500392
          - type: euclidean_spearman
            value: 85.76728064677287
          - type: manhattan_pearson
            value: 84.87947428989587
          - type: manhattan_spearman
            value: 85.62429454917464
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (ko-ko)
          type: mteb/sts17-crosslingual-sts
          config: ko-ko
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 82.14190939287384
          - type: cos_sim_spearman
            value: 82.27331573306041
          - type: euclidean_pearson
            value: 81.891896953716
          - type: euclidean_spearman
            value: 82.37695542955998
          - type: manhattan_pearson
            value: 81.73123869460504
          - type: manhattan_spearman
            value: 82.19989168441421
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (ar-ar)
          type: mteb/sts17-crosslingual-sts
          config: ar-ar
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 76.84695301843362
          - type: cos_sim_spearman
            value: 77.87790986014461
          - type: euclidean_pearson
            value: 76.91981583106315
          - type: euclidean_spearman
            value: 77.88154772749589
          - type: manhattan_pearson
            value: 76.94953277451093
          - type: manhattan_spearman
            value: 77.80499230728604
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (en-ar)
          type: mteb/sts17-crosslingual-sts
          config: en-ar
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 75.44657840482016
          - type: cos_sim_spearman
            value: 75.05531095119674
          - type: euclidean_pearson
            value: 75.88161755829299
          - type: euclidean_spearman
            value: 74.73176238219332
          - type: manhattan_pearson
            value: 75.63984765635362
          - type: manhattan_spearman
            value: 74.86476440770737
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (en-de)
          type: mteb/sts17-crosslingual-sts
          config: en-de
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 85.64700140524133
          - type: cos_sim_spearman
            value: 86.16014210425672
          - type: euclidean_pearson
            value: 86.49086860843221
          - type: euclidean_spearman
            value: 86.09729326815614
          - type: manhattan_pearson
            value: 86.43406265125513
          - type: manhattan_spearman
            value: 86.17740150939994
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (en-en)
          type: mteb/sts17-crosslingual-sts
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 87.91170098764921
          - type: cos_sim_spearman
            value: 88.12437004058931
          - type: euclidean_pearson
            value: 88.81828254494437
          - type: euclidean_spearman
            value: 88.14831794572122
          - type: manhattan_pearson
            value: 88.93442183448961
          - type: manhattan_spearman
            value: 88.15254630778304
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (en-tr)
          type: mteb/sts17-crosslingual-sts
          config: en-tr
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 72.91390577997292
          - type: cos_sim_spearman
            value: 71.22979457536074
          - type: euclidean_pearson
            value: 74.40314008106749
          - type: euclidean_spearman
            value: 72.54972136083246
          - type: manhattan_pearson
            value: 73.85687539530218
          - type: manhattan_spearman
            value: 72.09500771742637
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (es-en)
          type: mteb/sts17-crosslingual-sts
          config: es-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 80.9301067983089
          - type: cos_sim_spearman
            value: 80.74989828346473
          - type: euclidean_pearson
            value: 81.36781301814257
          - type: euclidean_spearman
            value: 80.9448819964426
          - type: manhattan_pearson
            value: 81.0351322685609
          - type: manhattan_spearman
            value: 80.70192121844177
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (es-es)
          type: mteb/sts17-crosslingual-sts
          config: es-es
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 87.13820465980005
          - type: cos_sim_spearman
            value: 86.73532498758757
          - type: euclidean_pearson
            value: 87.21329451846637
          - type: euclidean_spearman
            value: 86.57863198601002
          - type: manhattan_pearson
            value: 87.06973713818554
          - type: manhattan_spearman
            value: 86.47534918791499
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (fr-en)
          type: mteb/sts17-crosslingual-sts
          config: fr-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 85.48720108904415
          - type: cos_sim_spearman
            value: 85.62221757068387
          - type: euclidean_pearson
            value: 86.1010129512749
          - type: euclidean_spearman
            value: 85.86580966509942
          - type: manhattan_pearson
            value: 86.26800938808971
          - type: manhattan_spearman
            value: 85.88902721678429
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (it-en)
          type: mteb/sts17-crosslingual-sts
          config: it-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 83.98021347333516
          - type: cos_sim_spearman
            value: 84.53806553803501
          - type: euclidean_pearson
            value: 84.61483347248364
          - type: euclidean_spearman
            value: 85.14191408011702
          - type: manhattan_pearson
            value: 84.75297588825967
          - type: manhattan_spearman
            value: 85.33176753669242
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (nl-en)
          type: mteb/sts17-crosslingual-sts
          config: nl-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 84.51856644893233
          - type: cos_sim_spearman
            value: 85.27510748506413
          - type: euclidean_pearson
            value: 85.09886861540977
          - type: euclidean_spearman
            value: 85.62579245860887
          - type: manhattan_pearson
            value: 84.93017860464607
          - type: manhattan_spearman
            value: 85.5063988898453
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (en)
          type: mteb/sts22-crosslingual-sts
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 62.581573200584195
          - type: cos_sim_spearman
            value: 63.05503590247928
          - type: euclidean_pearson
            value: 63.652564812602094
          - type: euclidean_spearman
            value: 62.64811520876156
          - type: manhattan_pearson
            value: 63.506842893061076
          - type: manhattan_spearman
            value: 62.51289573046917
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (de)
          type: mteb/sts22-crosslingual-sts
          config: de
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 48.2248801729127
          - type: cos_sim_spearman
            value: 56.5936604678561
          - type: euclidean_pearson
            value: 43.98149464089
          - type: euclidean_spearman
            value: 56.108561882423615
          - type: manhattan_pearson
            value: 43.86880305903564
          - type: manhattan_spearman
            value: 56.04671150510166
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (es)
          type: mteb/sts22-crosslingual-sts
          config: es
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 55.17564527009831
          - type: cos_sim_spearman
            value: 64.57978560979488
          - type: euclidean_pearson
            value: 58.8818330154583
          - type: euclidean_spearman
            value: 64.99214839071281
          - type: manhattan_pearson
            value: 58.72671436121381
          - type: manhattan_spearman
            value: 65.10713416616109
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (pl)
          type: mteb/sts22-crosslingual-sts
          config: pl
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 26.772131864023297
          - type: cos_sim_spearman
            value: 34.68200792408681
          - type: euclidean_pearson
            value: 16.68082419005441
          - type: euclidean_spearman
            value: 34.83099932652166
          - type: manhattan_pearson
            value: 16.52605949659529
          - type: manhattan_spearman
            value: 34.82075801399475
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (tr)
          type: mteb/sts22-crosslingual-sts
          config: tr
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 54.42415189043831
          - type: cos_sim_spearman
            value: 63.54594264576758
          - type: euclidean_pearson
            value: 57.36577498297745
          - type: euclidean_spearman
            value: 63.111466379158074
          - type: manhattan_pearson
            value: 57.584543715873885
          - type: manhattan_spearman
            value: 63.22361054139183
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (ar)
          type: mteb/sts22-crosslingual-sts
          config: ar
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 47.55216762405518
          - type: cos_sim_spearman
            value: 56.98670142896412
          - type: euclidean_pearson
            value: 50.15318757562699
          - type: euclidean_spearman
            value: 56.524941926541906
          - type: manhattan_pearson
            value: 49.955618528674904
          - type: manhattan_spearman
            value: 56.37102209240117
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (ru)
          type: mteb/sts22-crosslingual-sts
          config: ru
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 49.20540980338571
          - type: cos_sim_spearman
            value: 59.9009453504406
          - type: euclidean_pearson
            value: 49.557749853620535
          - type: euclidean_spearman
            value: 59.76631621172456
          - type: manhattan_pearson
            value: 49.62340591181147
          - type: manhattan_spearman
            value: 59.94224880322436
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (zh)
          type: mteb/sts22-crosslingual-sts
          config: zh
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 51.508169956576985
          - type: cos_sim_spearman
            value: 66.82461565306046
          - type: euclidean_pearson
            value: 56.2274426480083
          - type: euclidean_spearman
            value: 66.6775323848333
          - type: manhattan_pearson
            value: 55.98277796300661
          - type: manhattan_spearman
            value: 66.63669848497175
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (fr)
          type: mteb/sts22-crosslingual-sts
          config: fr
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 72.86478788045507
          - type: cos_sim_spearman
            value: 76.7946552053193
          - type: euclidean_pearson
            value: 75.01598530490269
          - type: euclidean_spearman
            value: 76.83618917858281
          - type: manhattan_pearson
            value: 74.68337628304332
          - type: manhattan_spearman
            value: 76.57480204017773
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (de-en)
          type: mteb/sts22-crosslingual-sts
          config: de-en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 55.922619099401984
          - type: cos_sim_spearman
            value: 56.599362477240774
          - type: euclidean_pearson
            value: 56.68307052369783
          - type: euclidean_spearman
            value: 54.28760436777401
          - type: manhattan_pearson
            value: 56.67763566500681
          - type: manhattan_spearman
            value: 53.94619541711359
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (es-en)
          type: mteb/sts22-crosslingual-sts
          config: es-en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 66.74357206710913
          - type: cos_sim_spearman
            value: 72.5208244925311
          - type: euclidean_pearson
            value: 67.49254562186032
          - type: euclidean_spearman
            value: 72.02469076238683
          - type: manhattan_pearson
            value: 67.45251772238085
          - type: manhattan_spearman
            value: 72.05538819984538
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (it)
          type: mteb/sts22-crosslingual-sts
          config: it
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 71.25734330033191
          - type: cos_sim_spearman
            value: 76.98349083946823
          - type: euclidean_pearson
            value: 73.71642838667736
          - type: euclidean_spearman
            value: 77.01715504651384
          - type: manhattan_pearson
            value: 73.61712711868105
          - type: manhattan_spearman
            value: 77.01392571153896
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (pl-en)
          type: mteb/sts22-crosslingual-sts
          config: pl-en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 63.18215462781212
          - type: cos_sim_spearman
            value: 65.54373266117607
          - type: euclidean_pearson
            value: 64.54126095439005
          - type: euclidean_spearman
            value: 65.30410369102711
          - type: manhattan_pearson
            value: 63.50332221148234
          - type: manhattan_spearman
            value: 64.3455878104313
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (zh-en)
          type: mteb/sts22-crosslingual-sts
          config: zh-en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 62.30509221440029
          - type: cos_sim_spearman
            value: 65.99582704642478
          - type: euclidean_pearson
            value: 63.43818859884195
          - type: euclidean_spearman
            value: 66.83172582815764
          - type: manhattan_pearson
            value: 63.055779168508764
          - type: manhattan_spearman
            value: 65.49585020501449
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (es-it)
          type: mteb/sts22-crosslingual-sts
          config: es-it
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 59.587830825340404
          - type: cos_sim_spearman
            value: 68.93467614588089
          - type: euclidean_pearson
            value: 62.3073527367404
          - type: euclidean_spearman
            value: 69.69758171553175
          - type: manhattan_pearson
            value: 61.9074580815789
          - type: manhattan_spearman
            value: 69.57696375597865
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (de-fr)
          type: mteb/sts22-crosslingual-sts
          config: de-fr
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 57.143220125577066
          - type: cos_sim_spearman
            value: 67.78857859159226
          - type: euclidean_pearson
            value: 55.58225107923733
          - type: euclidean_spearman
            value: 67.80662907184563
          - type: manhattan_pearson
            value: 56.24953502726514
          - type: manhattan_spearman
            value: 67.98262125431616
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (de-pl)
          type: mteb/sts22-crosslingual-sts
          config: de-pl
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 21.826928900322066
          - type: cos_sim_spearman
            value: 49.578506634400405
          - type: euclidean_pearson
            value: 27.939890138843214
          - type: euclidean_spearman
            value: 52.71950519136242
          - type: manhattan_pearson
            value: 26.39878683847546
          - type: manhattan_spearman
            value: 47.54609580342499
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (fr-pl)
          type: mteb/sts22-crosslingual-sts
          config: fr-pl
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 57.27603854632001
          - type: cos_sim_spearman
            value: 50.709255283710995
          - type: euclidean_pearson
            value: 59.5419024445929
          - type: euclidean_spearman
            value: 50.709255283710995
          - type: manhattan_pearson
            value: 59.03256832438492
          - type: manhattan_spearman
            value: 61.97797868009122
      - task:
          type: STS
        dataset:
          name: MTEB STSBenchmark
          type: mteb/stsbenchmark-sts
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 85.00757054859712
          - type: cos_sim_spearman
            value: 87.29283629622222
          - type: euclidean_pearson
            value: 86.54824171775536
          - type: euclidean_spearman
            value: 87.24364730491402
          - type: manhattan_pearson
            value: 86.5062156915074
          - type: manhattan_spearman
            value: 87.15052170378574
      - task:
          type: Reranking
        dataset:
          name: MTEB SciDocsRR
          type: mteb/scidocs-reranking
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 82.03549357197389
          - type: mrr
            value: 95.05437645143527
      - task:
          type: Retrieval
        dataset:
          name: MTEB SciFact
          type: scifact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 57.260999999999996
          - type: map_at_10
            value: 66.259
          - type: map_at_100
            value: 66.884
          - type: map_at_1000
            value: 66.912
          - type: map_at_3
            value: 63.685
          - type: map_at_5
            value: 65.35499999999999
          - type: mrr_at_1
            value: 60.333000000000006
          - type: mrr_at_10
            value: 67.5
          - type: mrr_at_100
            value: 68.013
          - type: mrr_at_1000
            value: 68.038
          - type: mrr_at_3
            value: 65.61099999999999
          - type: mrr_at_5
            value: 66.861
          - type: ndcg_at_1
            value: 60.333000000000006
          - type: ndcg_at_10
            value: 70.41
          - type: ndcg_at_100
            value: 73.10600000000001
          - type: ndcg_at_1000
            value: 73.846
          - type: ndcg_at_3
            value: 66.133
          - type: ndcg_at_5
            value: 68.499
          - type: precision_at_1
            value: 60.333000000000006
          - type: precision_at_10
            value: 9.232999999999999
          - type: precision_at_100
            value: 1.0630000000000002
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 25.667
          - type: precision_at_5
            value: 17.067
          - type: recall_at_1
            value: 57.260999999999996
          - type: recall_at_10
            value: 81.94399999999999
          - type: recall_at_100
            value: 93.867
          - type: recall_at_1000
            value: 99.667
          - type: recall_at_3
            value: 70.339
          - type: recall_at_5
            value: 76.25
      - task:
          type: PairClassification
        dataset:
          name: MTEB SprintDuplicateQuestions
          type: mteb/sprintduplicatequestions-pairclassification
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.74356435643564
          - type: cos_sim_ap
            value: 93.13411948212683
          - type: cos_sim_f1
            value: 86.80521991300147
          - type: cos_sim_precision
            value: 84.00374181478017
          - type: cos_sim_recall
            value: 89.8
          - type: dot_accuracy
            value: 99.67920792079208
          - type: dot_ap
            value: 89.27277565444479
          - type: dot_f1
            value: 83.9276990718124
          - type: dot_precision
            value: 82.04393505253104
          - type: dot_recall
            value: 85.9
          - type: euclidean_accuracy
            value: 99.74257425742574
          - type: euclidean_ap
            value: 93.17993008259062
          - type: euclidean_f1
            value: 86.69396110542476
          - type: euclidean_precision
            value: 88.78406708595388
          - type: euclidean_recall
            value: 84.7
          - type: manhattan_accuracy
            value: 99.74257425742574
          - type: manhattan_ap
            value: 93.14413755550099
          - type: manhattan_f1
            value: 86.82483594144371
          - type: manhattan_precision
            value: 87.66564729867483
          - type: manhattan_recall
            value: 86
          - type: max_accuracy
            value: 99.74356435643564
          - type: max_ap
            value: 93.17993008259062
          - type: max_f1
            value: 86.82483594144371
      - task:
          type: Clustering
        dataset:
          name: MTEB StackExchangeClustering
          type: mteb/stackexchange-clustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 57.525863806168566
      - task:
          type: Clustering
        dataset:
          name: MTEB StackExchangeClusteringP2P
          type: mteb/stackexchange-clustering-p2p
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 32.68850574423839
      - task:
          type: Reranking
        dataset:
          name: MTEB StackOverflowDupQuestions
          type: mteb/stackoverflowdupquestions-reranking
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 49.71580650644033
          - type: mrr
            value: 50.50971903913081
      - task:
          type: Summarization
        dataset:
          name: MTEB SummEval
          type: mteb/summeval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 29.152190498799484
          - type: cos_sim_spearman
            value: 29.686180371952727
          - type: dot_pearson
            value: 27.248664793816342
          - type: dot_spearman
            value: 28.37748983721745
      - task:
          type: Retrieval
        dataset:
          name: MTEB TRECCOVID
          type: trec-covid
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.20400000000000001
          - type: map_at_10
            value: 1.6209999999999998
          - type: map_at_100
            value: 9.690999999999999
          - type: map_at_1000
            value: 23.733
          - type: map_at_3
            value: 0.575
          - type: map_at_5
            value: 0.885
          - type: mrr_at_1
            value: 78
          - type: mrr_at_10
            value: 86.56700000000001
          - type: mrr_at_100
            value: 86.56700000000001
          - type: mrr_at_1000
            value: 86.56700000000001
          - type: mrr_at_3
            value: 85.667
          - type: mrr_at_5
            value: 86.56700000000001
          - type: ndcg_at_1
            value: 76
          - type: ndcg_at_10
            value: 71.326
          - type: ndcg_at_100
            value: 54.208999999999996
          - type: ndcg_at_1000
            value: 49.252
          - type: ndcg_at_3
            value: 74.235
          - type: ndcg_at_5
            value: 73.833
          - type: precision_at_1
            value: 78
          - type: precision_at_10
            value: 74.8
          - type: precision_at_100
            value: 55.50000000000001
          - type: precision_at_1000
            value: 21.836
          - type: precision_at_3
            value: 78
          - type: precision_at_5
            value: 78
          - type: recall_at_1
            value: 0.20400000000000001
          - type: recall_at_10
            value: 1.894
          - type: recall_at_100
            value: 13.245999999999999
          - type: recall_at_1000
            value: 46.373
          - type: recall_at_3
            value: 0.613
          - type: recall_at_5
            value: 0.991
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (sqi-eng)
          type: mteb/tatoeba-bitext-mining
          config: sqi-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 95.89999999999999
          - type: f1
            value: 94.69999999999999
          - type: precision
            value: 94.11666666666667
          - type: recall
            value: 95.89999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (fry-eng)
          type: mteb/tatoeba-bitext-mining
          config: fry-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 68.20809248554913
          - type: f1
            value: 63.431048720066066
          - type: precision
            value: 61.69143958161298
          - type: recall
            value: 68.20809248554913
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (kur-eng)
          type: mteb/tatoeba-bitext-mining
          config: kur-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 71.21951219512195
          - type: f1
            value: 66.82926829268293
          - type: precision
            value: 65.1260162601626
          - type: recall
            value: 71.21951219512195
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (tur-eng)
          type: mteb/tatoeba-bitext-mining
          config: tur-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 97.2
          - type: f1
            value: 96.26666666666667
          - type: precision
            value: 95.8
          - type: recall
            value: 97.2
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (deu-eng)
          type: mteb/tatoeba-bitext-mining
          config: deu-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 99.3
          - type: f1
            value: 99.06666666666666
          - type: precision
            value: 98.95
          - type: recall
            value: 99.3
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (nld-eng)
          type: mteb/tatoeba-bitext-mining
          config: nld-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 97.39999999999999
          - type: f1
            value: 96.63333333333333
          - type: precision
            value: 96.26666666666668
          - type: recall
            value: 97.39999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ron-eng)
          type: mteb/tatoeba-bitext-mining
          config: ron-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 96
          - type: f1
            value: 94.86666666666666
          - type: precision
            value: 94.31666666666668
          - type: recall
            value: 96
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ang-eng)
          type: mteb/tatoeba-bitext-mining
          config: ang-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 47.01492537313433
          - type: f1
            value: 40.178867566927266
          - type: precision
            value: 38.179295828549556
          - type: recall
            value: 47.01492537313433
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ido-eng)
          type: mteb/tatoeba-bitext-mining
          config: ido-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 86.5
          - type: f1
            value: 83.62537480063796
          - type: precision
            value: 82.44555555555554
          - type: recall
            value: 86.5
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (jav-eng)
          type: mteb/tatoeba-bitext-mining
          config: jav-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 80.48780487804879
          - type: f1
            value: 75.45644599303138
          - type: precision
            value: 73.37398373983739
          - type: recall
            value: 80.48780487804879
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (isl-eng)
          type: mteb/tatoeba-bitext-mining
          config: isl-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 93.7
          - type: f1
            value: 91.95666666666666
          - type: precision
            value: 91.125
          - type: recall
            value: 93.7
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (slv-eng)
          type: mteb/tatoeba-bitext-mining
          config: slv-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 91.73754556500607
          - type: f1
            value: 89.65168084244632
          - type: precision
            value: 88.73025516403402
          - type: recall
            value: 91.73754556500607
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (cym-eng)
          type: mteb/tatoeba-bitext-mining
          config: cym-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 81.04347826086956
          - type: f1
            value: 76.2128364389234
          - type: precision
            value: 74.2
          - type: recall
            value: 81.04347826086956
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (kaz-eng)
          type: mteb/tatoeba-bitext-mining
          config: kaz-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 83.65217391304348
          - type: f1
            value: 79.4376811594203
          - type: precision
            value: 77.65797101449274
          - type: recall
            value: 83.65217391304348
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (est-eng)
          type: mteb/tatoeba-bitext-mining
          config: est-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 87.5
          - type: f1
            value: 85.02690476190476
          - type: precision
            value: 83.96261904761904
          - type: recall
            value: 87.5
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (heb-eng)
          type: mteb/tatoeba-bitext-mining
          config: heb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 89.3
          - type: f1
            value: 86.52333333333333
          - type: precision
            value: 85.22833333333332
          - type: recall
            value: 89.3
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (gla-eng)
          type: mteb/tatoeba-bitext-mining
          config: gla-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 65.01809408926418
          - type: f1
            value: 59.00594446432805
          - type: precision
            value: 56.827215807915444
          - type: recall
            value: 65.01809408926418
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (mar-eng)
          type: mteb/tatoeba-bitext-mining
          config: mar-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 91.2
          - type: f1
            value: 88.58
          - type: precision
            value: 87.33333333333334
          - type: recall
            value: 91.2
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (lat-eng)
          type: mteb/tatoeba-bitext-mining
          config: lat-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 59.199999999999996
          - type: f1
            value: 53.299166276284915
          - type: precision
            value: 51.3383908045977
          - type: recall
            value: 59.199999999999996
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (bel-eng)
          type: mteb/tatoeba-bitext-mining
          config: bel-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 93.2
          - type: f1
            value: 91.2
          - type: precision
            value: 90.25
          - type: recall
            value: 93.2
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (pms-eng)
          type: mteb/tatoeba-bitext-mining
          config: pms-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 64.76190476190476
          - type: f1
            value: 59.867110667110666
          - type: precision
            value: 58.07390192653351
          - type: recall
            value: 64.76190476190476
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (gle-eng)
          type: mteb/tatoeba-bitext-mining
          config: gle-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 76.2
          - type: f1
            value: 71.48147546897547
          - type: precision
            value: 69.65409090909091
          - type: recall
            value: 76.2
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (pes-eng)
          type: mteb/tatoeba-bitext-mining
          config: pes-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 93.8
          - type: f1
            value: 92.14
          - type: precision
            value: 91.35833333333333
          - type: recall
            value: 93.8
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (nob-eng)
          type: mteb/tatoeba-bitext-mining
          config: nob-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 97.89999999999999
          - type: f1
            value: 97.2
          - type: precision
            value: 96.85000000000001
          - type: recall
            value: 97.89999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (bul-eng)
          type: mteb/tatoeba-bitext-mining
          config: bul-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 94.6
          - type: f1
            value: 92.93333333333334
          - type: precision
            value: 92.13333333333333
          - type: recall
            value: 94.6
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (cbk-eng)
          type: mteb/tatoeba-bitext-mining
          config: cbk-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 74.1
          - type: f1
            value: 69.14817460317461
          - type: precision
            value: 67.2515873015873
          - type: recall
            value: 74.1
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (hun-eng)
          type: mteb/tatoeba-bitext-mining
          config: hun-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 95.19999999999999
          - type: f1
            value: 94.01333333333335
          - type: precision
            value: 93.46666666666667
          - type: recall
            value: 95.19999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (uig-eng)
          type: mteb/tatoeba-bitext-mining
          config: uig-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 76.9
          - type: f1
            value: 72.07523809523809
          - type: precision
            value: 70.19777777777779
          - type: recall
            value: 76.9
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (rus-eng)
          type: mteb/tatoeba-bitext-mining
          config: rus-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 94.1
          - type: f1
            value: 92.31666666666666
          - type: precision
            value: 91.43333333333332
          - type: recall
            value: 94.1
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (spa-eng)
          type: mteb/tatoeba-bitext-mining
          config: spa-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 97.8
          - type: f1
            value: 97.1
          - type: precision
            value: 96.76666666666668
          - type: recall
            value: 97.8
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (hye-eng)
          type: mteb/tatoeba-bitext-mining
          config: hye-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 92.85714285714286
          - type: f1
            value: 90.92093441150045
          - type: precision
            value: 90.00449236298293
          - type: recall
            value: 92.85714285714286
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (tel-eng)
          type: mteb/tatoeba-bitext-mining
          config: tel-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 93.16239316239316
          - type: f1
            value: 91.33903133903132
          - type: precision
            value: 90.56267806267806
          - type: recall
            value: 93.16239316239316
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (afr-eng)
          type: mteb/tatoeba-bitext-mining
          config: afr-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 92.4
          - type: f1
            value: 90.25666666666666
          - type: precision
            value: 89.25833333333334
          - type: recall
            value: 92.4
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (mon-eng)
          type: mteb/tatoeba-bitext-mining
          config: mon-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 90.22727272727272
          - type: f1
            value: 87.53030303030303
          - type: precision
            value: 86.37121212121211
          - type: recall
            value: 90.22727272727272
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (arz-eng)
          type: mteb/tatoeba-bitext-mining
          config: arz-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 79.03563941299791
          - type: f1
            value: 74.7349505840072
          - type: precision
            value: 72.9035639412998
          - type: recall
            value: 79.03563941299791
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (hrv-eng)
          type: mteb/tatoeba-bitext-mining
          config: hrv-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 97
          - type: f1
            value: 96.15
          - type: precision
            value: 95.76666666666668
          - type: recall
            value: 97
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (nov-eng)
          type: mteb/tatoeba-bitext-mining
          config: nov-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 76.26459143968872
          - type: f1
            value: 71.55642023346303
          - type: precision
            value: 69.7544932369835
          - type: recall
            value: 76.26459143968872
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (gsw-eng)
          type: mteb/tatoeba-bitext-mining
          config: gsw-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 58.119658119658126
          - type: f1
            value: 51.65242165242165
          - type: precision
            value: 49.41768108434775
          - type: recall
            value: 58.119658119658126
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (nds-eng)
          type: mteb/tatoeba-bitext-mining
          config: nds-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 74.3
          - type: f1
            value: 69.52055555555555
          - type: precision
            value: 67.7574938949939
          - type: recall
            value: 74.3
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ukr-eng)
          type: mteb/tatoeba-bitext-mining
          config: ukr-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 94.8
          - type: f1
            value: 93.31666666666666
          - type: precision
            value: 92.60000000000001
          - type: recall
            value: 94.8
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (uzb-eng)
          type: mteb/tatoeba-bitext-mining
          config: uzb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 76.63551401869158
          - type: f1
            value: 72.35202492211837
          - type: precision
            value: 70.60358255451713
          - type: recall
            value: 76.63551401869158
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (lit-eng)
          type: mteb/tatoeba-bitext-mining
          config: lit-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 90.4
          - type: f1
            value: 88.4811111111111
          - type: precision
            value: 87.7452380952381
          - type: recall
            value: 90.4
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ina-eng)
          type: mteb/tatoeba-bitext-mining
          config: ina-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 95
          - type: f1
            value: 93.60666666666667
          - type: precision
            value: 92.975
          - type: recall
            value: 95
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (lfn-eng)
          type: mteb/tatoeba-bitext-mining
          config: lfn-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 67.2
          - type: f1
            value: 63.01595782872099
          - type: precision
            value: 61.596587301587306
          - type: recall
            value: 67.2
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (zsm-eng)
          type: mteb/tatoeba-bitext-mining
          config: zsm-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 95.7
          - type: f1
            value: 94.52999999999999
          - type: precision
            value: 94
          - type: recall
            value: 95.7
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ita-eng)
          type: mteb/tatoeba-bitext-mining
          config: ita-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 94.6
          - type: f1
            value: 93.28999999999999
          - type: precision
            value: 92.675
          - type: recall
            value: 94.6
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (cmn-eng)
          type: mteb/tatoeba-bitext-mining
          config: cmn-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 96.39999999999999
          - type: f1
            value: 95.28333333333333
          - type: precision
            value: 94.75
          - type: recall
            value: 96.39999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (lvs-eng)
          type: mteb/tatoeba-bitext-mining
          config: lvs-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 91.9
          - type: f1
            value: 89.83
          - type: precision
            value: 88.92
          - type: recall
            value: 91.9
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (glg-eng)
          type: mteb/tatoeba-bitext-mining
          config: glg-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 94.69999999999999
          - type: f1
            value: 93.34222222222223
          - type: precision
            value: 92.75416666666668
          - type: recall
            value: 94.69999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ceb-eng)
          type: mteb/tatoeba-bitext-mining
          config: ceb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 60.333333333333336
          - type: f1
            value: 55.31203703703703
          - type: precision
            value: 53.39971108326371
          - type: recall
            value: 60.333333333333336
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (bre-eng)
          type: mteb/tatoeba-bitext-mining
          config: bre-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 12.9
          - type: f1
            value: 11.099861903031458
          - type: precision
            value: 10.589187932631877
          - type: recall
            value: 12.9
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ben-eng)
          type: mteb/tatoeba-bitext-mining
          config: ben-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 86.7
          - type: f1
            value: 83.0152380952381
          - type: precision
            value: 81.37833333333333
          - type: recall
            value: 86.7
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (swg-eng)
          type: mteb/tatoeba-bitext-mining
          config: swg-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 63.39285714285714
          - type: f1
            value: 56.832482993197274
          - type: precision
            value: 54.56845238095237
          - type: recall
            value: 63.39285714285714
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (arq-eng)
          type: mteb/tatoeba-bitext-mining
          config: arq-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 48.73765093304062
          - type: f1
            value: 41.555736920720456
          - type: precision
            value: 39.06874531737319
          - type: recall
            value: 48.73765093304062
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (kab-eng)
          type: mteb/tatoeba-bitext-mining
          config: kab-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 41.099999999999994
          - type: f1
            value: 36.540165945165946
          - type: precision
            value: 35.05175685425686
          - type: recall
            value: 41.099999999999994
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (fra-eng)
          type: mteb/tatoeba-bitext-mining
          config: fra-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 94.89999999999999
          - type: f1
            value: 93.42333333333333
          - type: precision
            value: 92.75833333333333
          - type: recall
            value: 94.89999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (por-eng)
          type: mteb/tatoeba-bitext-mining
          config: por-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 94.89999999999999
          - type: f1
            value: 93.63333333333334
          - type: precision
            value: 93.01666666666665
          - type: recall
            value: 94.89999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (tat-eng)
          type: mteb/tatoeba-bitext-mining
          config: tat-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 77.9
          - type: f1
            value: 73.64833333333334
          - type: precision
            value: 71.90282106782105
          - type: recall
            value: 77.9
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (oci-eng)
          type: mteb/tatoeba-bitext-mining
          config: oci-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 59.4
          - type: f1
            value: 54.90521367521367
          - type: precision
            value: 53.432840025471606
          - type: recall
            value: 59.4
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (pol-eng)
          type: mteb/tatoeba-bitext-mining
          config: pol-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 97.39999999999999
          - type: f1
            value: 96.6
          - type: precision
            value: 96.2
          - type: recall
            value: 97.39999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (war-eng)
          type: mteb/tatoeba-bitext-mining
          config: war-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 67.2
          - type: f1
            value: 62.25926129426129
          - type: precision
            value: 60.408376623376626
          - type: recall
            value: 67.2
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (aze-eng)
          type: mteb/tatoeba-bitext-mining
          config: aze-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 90.2
          - type: f1
            value: 87.60666666666667
          - type: precision
            value: 86.45277777777778
          - type: recall
            value: 90.2
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (vie-eng)
          type: mteb/tatoeba-bitext-mining
          config: vie-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 97.7
          - type: f1
            value: 97
          - type: precision
            value: 96.65
          - type: recall
            value: 97.7
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (nno-eng)
          type: mteb/tatoeba-bitext-mining
          config: nno-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 93.2
          - type: f1
            value: 91.39746031746031
          - type: precision
            value: 90.6125
          - type: recall
            value: 93.2
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (cha-eng)
          type: mteb/tatoeba-bitext-mining
          config: cha-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 32.11678832116788
          - type: f1
            value: 27.210415386260234
          - type: precision
            value: 26.20408990846947
          - type: recall
            value: 32.11678832116788
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (mhr-eng)
          type: mteb/tatoeba-bitext-mining
          config: mhr-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 8.5
          - type: f1
            value: 6.787319277832475
          - type: precision
            value: 6.3452094433344435
          - type: recall
            value: 8.5
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (dan-eng)
          type: mteb/tatoeba-bitext-mining
          config: dan-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 96.1
          - type: f1
            value: 95.08
          - type: precision
            value: 94.61666666666667
          - type: recall
            value: 96.1
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ell-eng)
          type: mteb/tatoeba-bitext-mining
          config: ell-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 95.3
          - type: f1
            value: 93.88333333333333
          - type: precision
            value: 93.18333333333332
          - type: recall
            value: 95.3
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (amh-eng)
          type: mteb/tatoeba-bitext-mining
          config: amh-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 85.11904761904762
          - type: f1
            value: 80.69444444444444
          - type: precision
            value: 78.72023809523809
          - type: recall
            value: 85.11904761904762
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (pam-eng)
          type: mteb/tatoeba-bitext-mining
          config: pam-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 11.1
          - type: f1
            value: 9.276381801735853
          - type: precision
            value: 8.798174603174601
          - type: recall
            value: 11.1
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (hsb-eng)
          type: mteb/tatoeba-bitext-mining
          config: hsb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 63.56107660455487
          - type: f1
            value: 58.70433569191332
          - type: precision
            value: 56.896926581464015
          - type: recall
            value: 63.56107660455487
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (srp-eng)
          type: mteb/tatoeba-bitext-mining
          config: srp-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 94.69999999999999
          - type: f1
            value: 93.10000000000001
          - type: precision
            value: 92.35
          - type: recall
            value: 94.69999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (epo-eng)
          type: mteb/tatoeba-bitext-mining
          config: epo-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 96.8
          - type: f1
            value: 96.01222222222222
          - type: precision
            value: 95.67083333333332
          - type: recall
            value: 96.8
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (kzj-eng)
          type: mteb/tatoeba-bitext-mining
          config: kzj-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 9.2
          - type: f1
            value: 7.911555250305249
          - type: precision
            value: 7.631246556216846
          - type: recall
            value: 9.2
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (awa-eng)
          type: mteb/tatoeba-bitext-mining
          config: awa-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 77.48917748917748
          - type: f1
            value: 72.27375798804371
          - type: precision
            value: 70.14430014430013
          - type: recall
            value: 77.48917748917748
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (fao-eng)
          type: mteb/tatoeba-bitext-mining
          config: fao-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 77.09923664122137
          - type: f1
            value: 72.61541257724463
          - type: precision
            value: 70.8998380754106
          - type: recall
            value: 77.09923664122137
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (mal-eng)
          type: mteb/tatoeba-bitext-mining
          config: mal-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 98.2532751091703
          - type: f1
            value: 97.69529354682193
          - type: precision
            value: 97.42843279961184
          - type: recall
            value: 98.2532751091703
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ile-eng)
          type: mteb/tatoeba-bitext-mining
          config: ile-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 82.8
          - type: f1
            value: 79.14672619047619
          - type: precision
            value: 77.59489247311828
          - type: recall
            value: 82.8
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (bos-eng)
          type: mteb/tatoeba-bitext-mining
          config: bos-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 94.35028248587571
          - type: f1
            value: 92.86252354048965
          - type: precision
            value: 92.2080979284369
          - type: recall
            value: 94.35028248587571
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (cor-eng)
          type: mteb/tatoeba-bitext-mining
          config: cor-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 8.5
          - type: f1
            value: 6.282429263935621
          - type: precision
            value: 5.783274240739785
          - type: recall
            value: 8.5
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (cat-eng)
          type: mteb/tatoeba-bitext-mining
          config: cat-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 92.7
          - type: f1
            value: 91.025
          - type: precision
            value: 90.30428571428571
          - type: recall
            value: 92.7
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (eus-eng)
          type: mteb/tatoeba-bitext-mining
          config: eus-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 81
          - type: f1
            value: 77.8232380952381
          - type: precision
            value: 76.60194444444444
          - type: recall
            value: 81
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (yue-eng)
          type: mteb/tatoeba-bitext-mining
          config: yue-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 91
          - type: f1
            value: 88.70857142857142
          - type: precision
            value: 87.7
          - type: recall
            value: 91
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (swe-eng)
          type: mteb/tatoeba-bitext-mining
          config: swe-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 96.39999999999999
          - type: f1
            value: 95.3
          - type: precision
            value: 94.76666666666667
          - type: recall
            value: 96.39999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (dtp-eng)
          type: mteb/tatoeba-bitext-mining
          config: dtp-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 8.1
          - type: f1
            value: 7.001008218834307
          - type: precision
            value: 6.708329562594269
          - type: recall
            value: 8.1
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (kat-eng)
          type: mteb/tatoeba-bitext-mining
          config: kat-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 87.1313672922252
          - type: f1
            value: 84.09070598748882
          - type: precision
            value: 82.79171454104429
          - type: recall
            value: 87.1313672922252
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (jpn-eng)
          type: mteb/tatoeba-bitext-mining
          config: jpn-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 96.39999999999999
          - type: f1
            value: 95.28333333333333
          - type: precision
            value: 94.73333333333332
          - type: recall
            value: 96.39999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (csb-eng)
          type: mteb/tatoeba-bitext-mining
          config: csb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 42.29249011857708
          - type: f1
            value: 36.981018542283365
          - type: precision
            value: 35.415877813576024
          - type: recall
            value: 42.29249011857708
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (xho-eng)
          type: mteb/tatoeba-bitext-mining
          config: xho-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 83.80281690140845
          - type: f1
            value: 80.86854460093896
          - type: precision
            value: 79.60093896713614
          - type: recall
            value: 83.80281690140845
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (orv-eng)
          type: mteb/tatoeba-bitext-mining
          config: orv-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 45.26946107784431
          - type: f1
            value: 39.80235464678088
          - type: precision
            value: 38.14342660001342
          - type: recall
            value: 45.26946107784431
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ind-eng)
          type: mteb/tatoeba-bitext-mining
          config: ind-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 94.3
          - type: f1
            value: 92.9
          - type: precision
            value: 92.26666666666668
          - type: recall
            value: 94.3
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (tuk-eng)
          type: mteb/tatoeba-bitext-mining
          config: tuk-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 37.93103448275862
          - type: f1
            value: 33.15192743764172
          - type: precision
            value: 31.57456528146183
          - type: recall
            value: 37.93103448275862
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (max-eng)
          type: mteb/tatoeba-bitext-mining
          config: max-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 69.01408450704226
          - type: f1
            value: 63.41549295774648
          - type: precision
            value: 61.342778895595806
          - type: recall
            value: 69.01408450704226
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (swh-eng)
          type: mteb/tatoeba-bitext-mining
          config: swh-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 76.66666666666667
          - type: f1
            value: 71.60705960705961
          - type: precision
            value: 69.60683760683762
          - type: recall
            value: 76.66666666666667
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (hin-eng)
          type: mteb/tatoeba-bitext-mining
          config: hin-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 95.8
          - type: f1
            value: 94.48333333333333
          - type: precision
            value: 93.83333333333333
          - type: recall
            value: 95.8
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (dsb-eng)
          type: mteb/tatoeba-bitext-mining
          config: dsb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 52.81837160751566
          - type: f1
            value: 48.435977731384824
          - type: precision
            value: 47.11291973845539
          - type: recall
            value: 52.81837160751566
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ber-eng)
          type: mteb/tatoeba-bitext-mining
          config: ber-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 44.9
          - type: f1
            value: 38.88962621607783
          - type: precision
            value: 36.95936507936508
          - type: recall
            value: 44.9
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (tam-eng)
          type: mteb/tatoeba-bitext-mining
          config: tam-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 90.55374592833876
          - type: f1
            value: 88.22553125484721
          - type: precision
            value: 87.26927252985884
          - type: recall
            value: 90.55374592833876
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (slk-eng)
          type: mteb/tatoeba-bitext-mining
          config: slk-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 94.6
          - type: f1
            value: 93.13333333333333
          - type: precision
            value: 92.45333333333333
          - type: recall
            value: 94.6
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (tgl-eng)
          type: mteb/tatoeba-bitext-mining
          config: tgl-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 93.7
          - type: f1
            value: 91.99666666666667
          - type: precision
            value: 91.26666666666668
          - type: recall
            value: 93.7
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ast-eng)
          type: mteb/tatoeba-bitext-mining
          config: ast-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 85.03937007874016
          - type: f1
            value: 81.75853018372703
          - type: precision
            value: 80.34120734908137
          - type: recall
            value: 85.03937007874016
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (mkd-eng)
          type: mteb/tatoeba-bitext-mining
          config: mkd-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 88.3
          - type: f1
            value: 85.5
          - type: precision
            value: 84.25833333333334
          - type: recall
            value: 88.3
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (khm-eng)
          type: mteb/tatoeba-bitext-mining
          config: khm-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 65.51246537396122
          - type: f1
            value: 60.02297410192148
          - type: precision
            value: 58.133467727289236
          - type: recall
            value: 65.51246537396122
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ces-eng)
          type: mteb/tatoeba-bitext-mining
          config: ces-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 96
          - type: f1
            value: 94.89
          - type: precision
            value: 94.39166666666667
          - type: recall
            value: 96
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (tzl-eng)
          type: mteb/tatoeba-bitext-mining
          config: tzl-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 57.692307692307686
          - type: f1
            value: 53.162393162393165
          - type: precision
            value: 51.70673076923077
          - type: recall
            value: 57.692307692307686
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (urd-eng)
          type: mteb/tatoeba-bitext-mining
          config: urd-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 91.60000000000001
          - type: f1
            value: 89.21190476190475
          - type: precision
            value: 88.08666666666667
          - type: recall
            value: 91.60000000000001
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ara-eng)
          type: mteb/tatoeba-bitext-mining
          config: ara-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 88
          - type: f1
            value: 85.47
          - type: precision
            value: 84.43266233766234
          - type: recall
            value: 88
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (kor-eng)
          type: mteb/tatoeba-bitext-mining
          config: kor-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 92.7
          - type: f1
            value: 90.64999999999999
          - type: precision
            value: 89.68333333333332
          - type: recall
            value: 92.7
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (yid-eng)
          type: mteb/tatoeba-bitext-mining
          config: yid-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 80.30660377358491
          - type: f1
            value: 76.33044137466307
          - type: precision
            value: 74.78970125786164
          - type: recall
            value: 80.30660377358491
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (fin-eng)
          type: mteb/tatoeba-bitext-mining
          config: fin-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 96.39999999999999
          - type: f1
            value: 95.44
          - type: precision
            value: 94.99166666666666
          - type: recall
            value: 96.39999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (tha-eng)
          type: mteb/tatoeba-bitext-mining
          config: tha-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 96.53284671532847
          - type: f1
            value: 95.37712895377129
          - type: precision
            value: 94.7992700729927
          - type: recall
            value: 96.53284671532847
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (wuu-eng)
          type: mteb/tatoeba-bitext-mining
          config: wuu-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 89
          - type: f1
            value: 86.23190476190476
          - type: precision
            value: 85.035
          - type: recall
            value: 89
      - task:
          type: Retrieval
        dataset:
          name: MTEB Touche2020
          type: webis-touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 2.585
          - type: map_at_10
            value: 9.012
          - type: map_at_100
            value: 14.027000000000001
          - type: map_at_1000
            value: 15.565000000000001
          - type: map_at_3
            value: 5.032
          - type: map_at_5
            value: 6.657
          - type: mrr_at_1
            value: 28.571
          - type: mrr_at_10
            value: 45.377
          - type: mrr_at_100
            value: 46.119
          - type: mrr_at_1000
            value: 46.127
          - type: mrr_at_3
            value: 41.156
          - type: mrr_at_5
            value: 42.585
          - type: ndcg_at_1
            value: 27.551
          - type: ndcg_at_10
            value: 23.395
          - type: ndcg_at_100
            value: 33.342
          - type: ndcg_at_1000
            value: 45.523
          - type: ndcg_at_3
            value: 25.158
          - type: ndcg_at_5
            value: 23.427
          - type: precision_at_1
            value: 28.571
          - type: precision_at_10
            value: 21.429000000000002
          - type: precision_at_100
            value: 6.714
          - type: precision_at_1000
            value: 1.473
          - type: precision_at_3
            value: 27.211000000000002
          - type: precision_at_5
            value: 24.490000000000002
          - type: recall_at_1
            value: 2.585
          - type: recall_at_10
            value: 15.418999999999999
          - type: recall_at_100
            value: 42.485
          - type: recall_at_1000
            value: 79.536
          - type: recall_at_3
            value: 6.239999999999999
          - type: recall_at_5
            value: 8.996
      - task:
          type: Classification
        dataset:
          name: MTEB ToxicConversationsClassification
          type: mteb/toxic_conversations_50k
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 71.3234
          - type: ap
            value: 14.361688653847423
          - type: f1
            value: 54.819068624319044
      - task:
          type: Classification
        dataset:
          name: MTEB TweetSentimentExtractionClassification
          type: mteb/tweet_sentiment_extraction
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 61.97792869269949
          - type: f1
            value: 62.28965628513728
      - task:
          type: Clustering
        dataset:
          name: MTEB TwentyNewsgroupsClustering
          type: mteb/twentynewsgroups-clustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 38.90540145385218
      - task:
          type: PairClassification
        dataset:
          name: MTEB TwitterSemEval2015
          type: mteb/twittersemeval2015-pairclassification
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 86.53513739047506
          - type: cos_sim_ap
            value: 75.27741586677557
          - type: cos_sim_f1
            value: 69.18792902473774
          - type: cos_sim_precision
            value: 67.94708725515136
          - type: cos_sim_recall
            value: 70.47493403693932
          - type: dot_accuracy
            value: 84.7052512368123
          - type: dot_ap
            value: 69.36075482849378
          - type: dot_f1
            value: 64.44688376631296
          - type: dot_precision
            value: 59.92288500793831
          - type: dot_recall
            value: 69.70976253298153
          - type: euclidean_accuracy
            value: 86.60666388508076
          - type: euclidean_ap
            value: 75.47512772621097
          - type: euclidean_f1
            value: 69.413872536473
          - type: euclidean_precision
            value: 67.39562624254472
          - type: euclidean_recall
            value: 71.55672823218997
          - type: manhattan_accuracy
            value: 86.52917684925792
          - type: manhattan_ap
            value: 75.34000110496703
          - type: manhattan_f1
            value: 69.28489190226429
          - type: manhattan_precision
            value: 67.24608889992551
          - type: manhattan_recall
            value: 71.45118733509234
          - type: max_accuracy
            value: 86.60666388508076
          - type: max_ap
            value: 75.47512772621097
          - type: max_f1
            value: 69.413872536473
      - task:
          type: PairClassification
        dataset:
          name: MTEB TwitterURLCorpus
          type: mteb/twitterurlcorpus-pairclassification
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 89.01695967710637
          - type: cos_sim_ap
            value: 85.8298270742901
          - type: cos_sim_f1
            value: 78.46988128389272
          - type: cos_sim_precision
            value: 74.86017897091722
          - type: cos_sim_recall
            value: 82.44533415460425
          - type: dot_accuracy
            value: 88.19420188613343
          - type: dot_ap
            value: 83.82679165901324
          - type: dot_f1
            value: 76.55833777304208
          - type: dot_precision
            value: 75.6884875846501
          - type: dot_recall
            value: 77.44841392054204
          - type: euclidean_accuracy
            value: 89.03054294252338
          - type: euclidean_ap
            value: 85.89089555185325
          - type: euclidean_f1
            value: 78.62997658079624
          - type: euclidean_precision
            value: 74.92329149232914
          - type: euclidean_recall
            value: 82.72251308900523
          - type: manhattan_accuracy
            value: 89.0266620095471
          - type: manhattan_ap
            value: 85.86458997929147
          - type: manhattan_f1
            value: 78.50685331000291
          - type: manhattan_precision
            value: 74.5499861534201
          - type: manhattan_recall
            value: 82.90729904527257
          - type: max_accuracy
            value: 89.03054294252338
          - type: max_ap
            value: 85.89089555185325
          - type: max_f1
            value: 78.62997658079624

multilingual-e5-large-mlx

This model was converted to MLX format from intfloat/multilingual-e5-large. Refer to the original model card for more details on the model.

Use with mlx

pip install mlx
git clone https://github.com/ml-explore/mlx-examples.git
cd mlx-examples/llms/hf_llm
python generate.py --model mlx-community/multilingual-e5-large-mlx --prompt "My name is"