metadata
base_model: HooshvareLab/bert-base-parsbert-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: finetuned-parsbert-uncased-ArmanEmo
results: []
finetuned-parsbert-uncased-ArmanEmo
This model is a fine-tuned version of HooshvareLab/bert-base-parsbert-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0060
- Accuracy: 1.0
- Precision Macro: 1.0
- Recall Macro: 1.0
- F1 Macro: 1.0
- F1 C0: 1.0
- F1 C1: 1.0
- F1 C2: 1.0
- F1 C3: 1.0
- F1 C4: 1.0
- F1 C5: 1.0
- F1 C6: 1.0
- Recall C0: 1.0
- Recall C1: 1.0
- Recall C2: 1.0
- Recall C3: 1.0
- Recall C4: 1.0
- Recall C5: 1.0
- Recall C6: 1.0
- Precision C0: 1.0
- Precision C1: 1.0
- Precision C2: 1.0
- Precision C3: 1.0
- Precision C4: 1.0
- Precision C5: 1.0
- Precision C6: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | F1 C0 | F1 C1 | F1 C2 | F1 C3 | F1 C4 | F1 C5 | F1 C6 | Recall C0 | Recall C1 | Recall C2 | Recall C3 | Recall C4 | Recall C5 | Recall C6 | Precision C0 | Precision C1 | Precision C2 | Precision C3 | Precision C4 | Precision C5 | Precision C6 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 144 | 0.3531 | 0.5065 | 0.3687 | 0.3986 | 0.3583 | 0.6766 | 0.3370 | 0.4966 | 0.0 | 0.4164 | 0.0 | 0.5817 | 0.9091 | 0.2366 | 0.7143 | 0.0 | 0.3862 | 0.0 | 0.5440 | 0.5388 | 0.5849 | 0.3806 | 0.0 | 0.4516 | 0.0 | 0.625 |
No log | 2.0 | 288 | 0.2289 | 0.7298 | 0.5210 | 0.5631 | 0.5333 | 0.8451 | 0.7790 | 0.6063 | 0.0 | 0.6905 | 0.0 | 0.8120 | 0.9818 | 0.8206 | 0.5 | 0.0 | 0.8 | 0.0 | 0.8394 | 0.7418 | 0.7414 | 0.77 | 0.0 | 0.6073 | 0.0 | 0.7864 |
No log | 3.0 | 432 | 0.1129 | 0.9270 | 0.9239 | 0.8955 | 0.9061 | 0.9762 | 0.9492 | 0.8910 | 0.9027 | 0.8792 | 0.8108 | 0.9333 | 0.9709 | 0.9618 | 0.9026 | 0.8947 | 0.9034 | 0.6923 | 0.9430 | 0.9816 | 0.9368 | 0.8797 | 0.9107 | 0.8562 | 0.9783 | 0.9239 |
0.3027 | 4.0 | 576 | 0.0567 | 0.9652 | 0.9491 | 0.9545 | 0.9507 | 0.9909 | 0.9847 | 0.9161 | 0.9402 | 0.9565 | 0.8872 | 0.9796 | 0.9927 | 0.9847 | 0.8506 | 0.9649 | 0.9862 | 0.9077 | 0.9948 | 0.9891 | 0.9847 | 0.9924 | 0.9167 | 0.9286 | 0.8676 | 0.9648 |
0.3027 | 5.0 | 720 | 0.0296 | 0.9844 | 0.9736 | 0.9819 | 0.9776 | 0.9964 | 0.9885 | 0.9673 | 0.9913 | 0.9862 | 0.9185 | 0.9948 | 0.9927 | 0.9847 | 0.9610 | 1.0 | 0.9862 | 0.9538 | 0.9948 | 1.0 | 0.9923 | 0.9737 | 0.9828 | 0.9862 | 0.8857 | 0.9948 |
0.3027 | 6.0 | 864 | 0.0144 | 0.9965 | 0.9939 | 0.9937 | 0.9938 | 0.9982 | 1.0 | 0.9935 | 0.9913 | 0.9965 | 0.9767 | 1.0 | 1.0 | 1.0 | 0.9935 | 1.0 | 0.9931 | 0.9692 | 1.0 | 0.9964 | 1.0 | 0.9935 | 0.9828 | 1.0 | 0.9844 | 1.0 |
0.0482 | 7.0 | 1008 | 0.0088 | 0.9991 | 0.9993 | 0.9990 | 0.9991 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9965 | 1.0 | 0.9974 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9931 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9948 |
0.0482 | 8.0 | 1152 | 0.0069 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0482 | 9.0 | 1296 | 0.0063 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0482 | 10.0 | 1440 | 0.0060 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Framework versions
- Transformers 4.38.1
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2