Text Generation
Transformers
PyTorch
mpt
Composer
MosaicML
llm-foundry
custom_code
text-generation-inference
mpt-7b-storywriter / README.md
jacobfulano's picture
Update README.md
d37bf0a
|
raw
history blame
4.85 kB
---
license: cc-by-sa-3.0
tags:
- Composer
- MosaicML
- llm-foundry
---
# MPT-7B-StoryWriter-65k+
MPT-7B-StoryWriter-65k+ is a model designed to read and write fictional stories with super long context lengths.
It was built by finetuning MPT-7B with a context length of 65k tokens on a filtered fiction subset of the [books3 dataset](https://huggingface.co/datasets/the_pile_books3).
At inference time, thanks to [ALiBi](https://arxiv.org/abs/2108.12409), MPT-7B-StoryWriter-65k+ can extrapolate even beyond 65k tokens.
We demonstrate generations as long as 84k tokens on a single node of 8 A100-80GB GPUs in our [blogpost](www.mosaicml.com/blog/mpt-7b).
* License: _Apache-2.0_ (commercial use permitted)
This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture.
## Model Date
May 5, 2023
## Model License
Apache-2.0 (commercial use permitted)
## Documentation
* [Blog post: Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs](https://www.mosaicml.com/blog/mpt-7b)
* [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/)
* Questions: Feel free to contact us via the [MosaicML Community Slack](https://join.slack.com/t/mosaicml-community/shared_invite/zt-w0tiddn9-WGTlRpfjcO9J5jyrMub1dg)!
## How to Use
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom model architecture that is not yet part of the `transformers` package.
It includes options for many training efficiency features such as [FlashAttention (Dao et al. 2022)](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), QK LayerNorm, and more.
```python
import transformers
model = transformers.AutoModelForCausalLM.from_pretrained('mosaicml/mpt-7b-storywriter', trust_remote_code=True, torch_dtype=torch.bfloat16)
```
To use the optimized triton implementation of FlashAttention, you can load with `attn_impl='triton'` and move the model to `bfloat16` like so:
```python
model = transformers.AutoModelForCausalLM.from_pretrained('mosaicml/mpt-7b-storywriter', trust_remote_code=True, torch_dtype=torch.bfloat16, attn_impl='triton')
model.to(device='cuda:0', dtype=torch.bfloat16)
```
Although the model was trained with a sequence length of 2048 and finetuned with a sequence length of 65536,
ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example:
```python
config = transformers.AutoConfig.from_pretrained('mosaicml/mpt-7b-storywriter', trust_remote_code=True)
config.update({"max_seq_len": 83968})
model = transformers.AutoModelForCausalLM.from_pretrained('mosaicml/mpt-7b-storywriter', config=config, trust_remote_code=True)
```
This model was trained with the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
```
## Model Description
The architecture is a modification of a standard decoder-only transformer.
The model has been modified from a standard transformer in the following ways:
* It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf)
* It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings
* It does not use biases
| Hyperparameter | Value |
|----------------|-------|
|n_parameters | 6.7B |
|n_layers | 32 |
| n_heads | 32 |
| d_model | 4096 |
| vocab size | 50432 |
| sequence length | **65536** |
## PreTraining Data
For more details on the pretraining process, see [MPT-7B](https://huggingface.co/mosaicml/mpt-7b).
The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
## Limitations and Biases
_The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_
MPT-7B-Instruct can produce factually incorrect output, and should not be relied on to produce factually accurate information.
MPT-7B-Instruct was trained on various public datasets.
While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
## Acknowledgements
This model was finetuned by Alex Trott and the MosaicML NLP team
## Citation
Please cite this model using the following format:
```
@online{MosaicML2023Introducing,
author = {MosaicML NLP Team},
title = {Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs},
year = {2023},
url = {www.mosaicml.com/blog/mpt-7b},
note = {Accessed: 2023-03-28}, % change this date
urldate = {2023-03-28} % change this date
}
```