Edit model card

layoutlmv3-finetuned-sroie-funsd

This model is a fine-tuned version of layoutlmv3 on the mp-02/sroie-funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1436
  • Precision: 0.8236
  • Recall: 0.8143
  • F1: 0.8189
  • Accuracy: 0.9670

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 2.5773 250 0.1947 0.7126 0.6572 0.6838 0.9480
0.396 5.1546 500 0.1317 0.7733 0.7599 0.7665 0.9607
0.396 7.7320 750 0.1302 0.7963 0.7874 0.7918 0.9651
0.101 10.3093 1000 0.1165 0.8121 0.8047 0.8084 0.9713
0.101 12.8866 1250 0.1226 0.8219 0.8077 0.8148 0.9689
0.0598 15.4639 1500 0.1353 0.8192 0.8113 0.8152 0.9676
0.0598 18.0412 1750 0.1373 0.8271 0.8154 0.8212 0.9689
0.0405 20.6186 2000 0.1436 0.8236 0.8143 0.8189 0.9670
0.0405 23.1959 2250 0.1447 0.8260 0.8184 0.8222 0.9683
0.033 25.7732 2500 0.1491 0.8157 0.8174 0.8166 0.9665

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
31
Safetensors
Model size
126M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train mp-02/layoutlmv3-finetuned-sroie-funsd

Evaluation results