Edit model card

Sentiment Analysis in Japanese - Phân tích cảm xúc trong tiếng Nhật

Bert phân tích cảm xúc

Model description

Mô hình có tác dụng xác định cảm xúc của đoạn văn. Sử dụng nhãn: "positive", "negative"

Ví dụ: 今日はいい天気ですね

    negative: 6.001393558108248e-05
    positive: 0.999940037727356

今日の食べ物はとてもつまらない

    negative: 0.9999252557754517
    positive: 7.470489799743518e-05

Base model

Mô hình được đạo tạo dựa trên cơ sở của model Base Japanese

Training data

Mô hình được đào tạo dựa trên dữ liệu được thu thập bởi TAKAHIRO KUBO (https://www.kaggle.com/datasets/takahirokubo0/chabsa) - có chỉnh sửa.

Model variations

Chưa xác định

Intended uses & limitations

Chưa xác định

License

Đây là một open-source library, bạn có thể sử dụng nó với bất kì mục đích nào. Rất cảm ơn nếu bạn ghi nguồn khi sử dụng mô hình này (nếu không ghi cũng không sao).

How to use

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import os


def clear():
    os.system('clear')


checkpoint = "mr4/bert-base-jp-sentiment-analysis"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
clear()
print("Ngày hôm nay của bạn thế nào?")
val = input("")
raw_inputs = [val]
inputs = tokenizer(raw_inputs, padding=True,
                   truncation=True, return_tensors="pt")
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
clear()
print(">>>>>>>>>>>>>>>>>>>>>>>>>>")
for i, prediction in enumerate(predictions):
    print(raw_inputs[i])
    for j, value in enumerate(prediction):
        print(
            "    " + model.config.id2label[j] + ": " + str(value.item()))
print("<<<<<<<<<<<<<<<<<<<<<<<<<<")

Liên hệ

Mọi thông tin liên quan có thể liên hệ qua email: zZz4everzZz@live.co.uk.

Downloads last month
108
Safetensors
Model size
111M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.