mradermacher's picture
auto-patch README.md
a858a6e verified
metadata
base_model: Na0s/Mixtral-8x7B-v0.1-instruct-l2-norm-post-SFT-pruned-4-experts
datasets:
  - Na0s/sft-ready-Text-Generation-Augmented-Data
language:
  - en
library_name: transformers
quantized_by: mradermacher
tags: []

About

weighted/imatrix quants of https://huggingface.co/Na0s/Mixtral-8x7B-v0.1-instruct-l2-norm-post-SFT-pruned-4-experts

static quants are available at https://huggingface.co/mradermacher/Mixtral-8x7B-v0.1-instruct-l2-norm-post-SFT-pruned-4-experts-GGUF

Usage

If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files.

Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

Link Type Size/GB Notes
GGUF i1-IQ1_S 5.1 for the desperate
GGUF i1-IQ1_M 5.6 mostly desperate
GGUF i1-IQ2_XXS 6.5
GGUF i1-IQ2_XS 7.2
GGUF i1-IQ2_S 7.4
GGUF i1-IQ2_M 8.1
GGUF i1-Q2_K 8.9 IQ3_XXS probably better
GGUF i1-IQ3_XXS 9.4 lower quality
GGUF i1-IQ3_XS 10.0
GGUF i1-Q3_K_S 10.5 IQ3_XS probably better
GGUF i1-IQ3_S 10.6 beats Q3_K*
GGUF i1-IQ3_M 10.7
GGUF i1-Q3_K_M 11.7 IQ3_S probably better
GGUF i1-Q3_K_L 12.6 IQ3_M probably better
GGUF i1-IQ4_XS 13.0
GGUF i1-Q4_0 13.8 fast, low quality
GGUF i1-Q4_K_S 13.8 optimal size/speed/quality
GGUF i1-Q4_K_M 14.7 fast, recommended
GGUF i1-Q5_K_S 16.7
GGUF i1-Q5_K_M 17.2
GGUF i1-Q6_K 19.9 practically like static Q6_K

Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):

image.png

And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized.

Thanks

I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to @nicoboss for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.