metadata
tags:
- mteb
- sentence-transformers
- transformers
- Qwen2
- sentence-similarity
- llama-cpp
- gguf-my-repo
license: apache-2.0
base_model: Alibaba-NLP/gte-Qwen2-1.5B-instruct
model-index:
- name: gte-qwen2-7B-instruct
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 83.98507462686567
- type: ap
value: 50.93015252587014
- type: f1
value: 78.50416599051215
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 96.61065
- type: ap
value: 94.89174052954196
- type: f1
value: 96.60942596940565
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 55.614000000000004
- type: f1
value: 54.90553480294904
- task:
type: Retrieval
dataset:
name: MTEB ArguAna
type: mteb/arguana
config: default
split: test
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
metrics:
- type: map_at_1
value: 45.164
- type: map_at_10
value: 61.519
- type: map_at_100
value: 61.769
- type: map_at_1000
value: 61.769
- type: map_at_3
value: 57.443999999999996
- type: map_at_5
value: 60.058
- type: mrr_at_1
value: 46.088
- type: mrr_at_10
value: 61.861
- type: mrr_at_100
value: 62.117999999999995
- type: mrr_at_1000
value: 62.117999999999995
- type: mrr_at_3
value: 57.729
- type: mrr_at_5
value: 60.392
- type: ndcg_at_1
value: 45.164
- type: ndcg_at_10
value: 69.72
- type: ndcg_at_100
value: 70.719
- type: ndcg_at_1000
value: 70.719
- type: ndcg_at_3
value: 61.517999999999994
- type: ndcg_at_5
value: 66.247
- type: precision_at_1
value: 45.164
- type: precision_at_10
value: 9.545
- type: precision_at_100
value: 0.996
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 24.443
- type: precision_at_5
value: 16.97
- type: recall_at_1
value: 45.164
- type: recall_at_10
value: 95.448
- type: recall_at_100
value: 99.644
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 73.329
- type: recall_at_5
value: 84.851
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 50.511868162026175
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 45.007803189284004
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 64.55292107723382
- type: mrr
value: 77.66158818097877
- task:
type: STS
dataset:
name: MTEB BIOSSES
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 85.65459047085452
- type: cos_sim_spearman
value: 82.10729255710761
- type: euclidean_pearson
value: 82.78079159312476
- type: euclidean_spearman
value: 80.50002701880933
- type: manhattan_pearson
value: 82.41372641383016
- type: manhattan_spearman
value: 80.57412509272639
- task:
type: Classification
dataset:
name: MTEB Banking77Classification
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 87.30844155844156
- type: f1
value: 87.25307322443255
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 43.20754608934859
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 38.818037697335505
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackAndroidRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: f46a197baaae43b4f621051089b82a364682dfeb
metrics:
- type: map_at_1
value: 35.423
- type: map_at_10
value: 47.198
- type: map_at_100
value: 48.899
- type: map_at_1000
value: 49.004
- type: map_at_3
value: 43.114999999999995
- type: map_at_5
value: 45.491
- type: mrr_at_1
value: 42.918
- type: mrr_at_10
value: 53.299
- type: mrr_at_100
value: 54.032000000000004
- type: mrr_at_1000
value: 54.055
- type: mrr_at_3
value: 50.453
- type: mrr_at_5
value: 52.205999999999996
- type: ndcg_at_1
value: 42.918
- type: ndcg_at_10
value: 53.98
- type: ndcg_at_100
value: 59.57
- type: ndcg_at_1000
value: 60.879000000000005
- type: ndcg_at_3
value: 48.224000000000004
- type: ndcg_at_5
value: 50.998
- type: precision_at_1
value: 42.918
- type: precision_at_10
value: 10.299999999999999
- type: precision_at_100
value: 1.687
- type: precision_at_1000
value: 0.211
- type: precision_at_3
value: 22.842000000000002
- type: precision_at_5
value: 16.681
- type: recall_at_1
value: 35.423
- type: recall_at_10
value: 66.824
- type: recall_at_100
value: 89.564
- type: recall_at_1000
value: 97.501
- type: recall_at_3
value: 50.365
- type: recall_at_5
value: 57.921
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackEnglishRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
metrics:
- type: map_at_1
value: 33.205
- type: map_at_10
value: 44.859
- type: map_at_100
value: 46.135
- type: map_at_1000
value: 46.259
- type: map_at_3
value: 41.839
- type: map_at_5
value: 43.662
- type: mrr_at_1
value: 41.146
- type: mrr_at_10
value: 50.621
- type: mrr_at_100
value: 51.207
- type: mrr_at_1000
value: 51.246
- type: mrr_at_3
value: 48.535000000000004
- type: mrr_at_5
value: 49.818
- type: ndcg_at_1
value: 41.146
- type: ndcg_at_10
value: 50.683
- type: ndcg_at_100
value: 54.82
- type: ndcg_at_1000
value: 56.69
- type: ndcg_at_3
value: 46.611000000000004
- type: ndcg_at_5
value: 48.66
- type: precision_at_1
value: 41.146
- type: precision_at_10
value: 9.439
- type: precision_at_100
value: 1.465
- type: precision_at_1000
value: 0.194
- type: precision_at_3
value: 22.59
- type: precision_at_5
value: 15.86
- type: recall_at_1
value: 33.205
- type: recall_at_10
value: 61.028999999999996
- type: recall_at_100
value: 78.152
- type: recall_at_1000
value: 89.59700000000001
- type: recall_at_3
value: 49.05
- type: recall_at_5
value: 54.836
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGamingRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: 4885aa143210c98657558c04aaf3dc47cfb54340
metrics:
- type: map_at_1
value: 41.637
- type: map_at_10
value: 55.162
- type: map_at_100
value: 56.142
- type: map_at_1000
value: 56.188
- type: map_at_3
value: 51.564
- type: map_at_5
value: 53.696
- type: mrr_at_1
value: 47.524
- type: mrr_at_10
value: 58.243
- type: mrr_at_100
value: 58.879999999999995
- type: mrr_at_1000
value: 58.9
- type: mrr_at_3
value: 55.69499999999999
- type: mrr_at_5
value: 57.284
- type: ndcg_at_1
value: 47.524
- type: ndcg_at_10
value: 61.305
- type: ndcg_at_100
value: 65.077
- type: ndcg_at_1000
value: 65.941
- type: ndcg_at_3
value: 55.422000000000004
- type: ndcg_at_5
value: 58.516
- type: precision_at_1
value: 47.524
- type: precision_at_10
value: 9.918000000000001
- type: precision_at_100
value: 1.276
- type: precision_at_1000
value: 0.13899999999999998
- type: precision_at_3
value: 24.765
- type: precision_at_5
value: 17.204
- type: recall_at_1
value: 41.637
- type: recall_at_10
value: 76.185
- type: recall_at_100
value: 92.149
- type: recall_at_1000
value: 98.199
- type: recall_at_3
value: 60.856
- type: recall_at_5
value: 68.25099999999999
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGisRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: 5003b3064772da1887988e05400cf3806fe491f2
metrics:
- type: map_at_1
value: 26.27
- type: map_at_10
value: 37.463
- type: map_at_100
value: 38.434000000000005
- type: map_at_1000
value: 38.509
- type: map_at_3
value: 34.226
- type: map_at_5
value: 36.161
- type: mrr_at_1
value: 28.588
- type: mrr_at_10
value: 39.383
- type: mrr_at_100
value: 40.23
- type: mrr_at_1000
value: 40.281
- type: mrr_at_3
value: 36.422
- type: mrr_at_5
value: 38.252
- type: ndcg_at_1
value: 28.588
- type: ndcg_at_10
value: 43.511
- type: ndcg_at_100
value: 48.274
- type: ndcg_at_1000
value: 49.975
- type: ndcg_at_3
value: 37.319
- type: ndcg_at_5
value: 40.568
- type: precision_at_1
value: 28.588
- type: precision_at_10
value: 6.893000000000001
- type: precision_at_100
value: 0.9900000000000001
- type: precision_at_1000
value: 0.117
- type: precision_at_3
value: 16.347
- type: precision_at_5
value: 11.661000000000001
- type: recall_at_1
value: 26.27
- type: recall_at_10
value: 60.284000000000006
- type: recall_at_100
value: 81.902
- type: recall_at_1000
value: 94.43
- type: recall_at_3
value: 43.537
- type: recall_at_5
value: 51.475
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackMathematicaRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: 90fceea13679c63fe563ded68f3b6f06e50061de
metrics:
- type: map_at_1
value: 18.168
- type: map_at_10
value: 28.410000000000004
- type: map_at_100
value: 29.78
- type: map_at_1000
value: 29.892999999999997
- type: map_at_3
value: 25.238
- type: map_at_5
value: 26.96
- type: mrr_at_1
value: 23.507
- type: mrr_at_10
value: 33.382
- type: mrr_at_100
value: 34.404
- type: mrr_at_1000
value: 34.467999999999996
- type: mrr_at_3
value: 30.637999999999998
- type: mrr_at_5
value: 32.199
- type: ndcg_at_1
value: 23.507
- type: ndcg_at_10
value: 34.571000000000005
- type: ndcg_at_100
value: 40.663
- type: ndcg_at_1000
value: 43.236000000000004
- type: ndcg_at_3
value: 29.053
- type: ndcg_at_5
value: 31.563999999999997
- type: precision_at_1
value: 23.507
- type: precision_at_10
value: 6.654
- type: precision_at_100
value: 1.113
- type: precision_at_1000
value: 0.146
- type: precision_at_3
value: 14.427999999999999
- type: precision_at_5
value: 10.498000000000001
- type: recall_at_1
value: 18.168
- type: recall_at_10
value: 48.443000000000005
- type: recall_at_100
value: 74.47
- type: recall_at_1000
value: 92.494
- type: recall_at_3
value: 33.379999999999995
- type: recall_at_5
value: 39.76
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackPhysicsRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
metrics:
- type: map_at_1
value: 32.39
- type: map_at_10
value: 44.479
- type: map_at_100
value: 45.977000000000004
- type: map_at_1000
value: 46.087
- type: map_at_3
value: 40.976
- type: map_at_5
value: 43.038
- type: mrr_at_1
value: 40.135
- type: mrr_at_10
value: 50.160000000000004
- type: mrr_at_100
value: 51.052
- type: mrr_at_1000
value: 51.087
- type: mrr_at_3
value: 47.818
- type: mrr_at_5
value: 49.171
- type: ndcg_at_1
value: 40.135
- type: ndcg_at_10
value: 50.731
- type: ndcg_at_100
value: 56.452000000000005
- type: ndcg_at_1000
value: 58.123000000000005
- type: ndcg_at_3
value: 45.507
- type: ndcg_at_5
value: 48.11
- type: precision_at_1
value: 40.135
- type: precision_at_10
value: 9.192
- type: precision_at_100
value: 1.397
- type: precision_at_1000
value: 0.169
- type: precision_at_3
value: 21.816
- type: precision_at_5
value: 15.476
- type: recall_at_1
value: 32.39
- type: recall_at_10
value: 63.597
- type: recall_at_100
value: 86.737
- type: recall_at_1000
value: 97.039
- type: recall_at_3
value: 48.906
- type: recall_at_5
value: 55.659000000000006
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackProgrammersRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
metrics:
- type: map_at_1
value: 28.397
- type: map_at_10
value: 39.871
- type: map_at_100
value: 41.309000000000005
- type: map_at_1000
value: 41.409
- type: map_at_3
value: 36.047000000000004
- type: map_at_5
value: 38.104
- type: mrr_at_1
value: 34.703
- type: mrr_at_10
value: 44.773
- type: mrr_at_100
value: 45.64
- type: mrr_at_1000
value: 45.678999999999995
- type: mrr_at_3
value: 41.705
- type: mrr_at_5
value: 43.406
- type: ndcg_at_1
value: 34.703
- type: ndcg_at_10
value: 46.271
- type: ndcg_at_100
value: 52.037
- type: ndcg_at_1000
value: 53.81700000000001
- type: ndcg_at_3
value: 39.966
- type: ndcg_at_5
value: 42.801
- type: precision_at_1
value: 34.703
- type: precision_at_10
value: 8.744
- type: precision_at_100
value: 1.348
- type: precision_at_1000
value: 0.167
- type: precision_at_3
value: 19.102
- type: precision_at_5
value: 13.836
- type: recall_at_1
value: 28.397
- type: recall_at_10
value: 60.299
- type: recall_at_100
value: 84.595
- type: recall_at_1000
value: 96.155
- type: recall_at_3
value: 43.065
- type: recall_at_5
value: 50.371
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
metrics:
- type: map_at_1
value: 28.044333333333338
- type: map_at_10
value: 38.78691666666666
- type: map_at_100
value: 40.113
- type: map_at_1000
value: 40.22125
- type: map_at_3
value: 35.52966666666667
- type: map_at_5
value: 37.372749999999996
- type: mrr_at_1
value: 33.159083333333335
- type: mrr_at_10
value: 42.913583333333335
- type: mrr_at_100
value: 43.7845
- type: mrr_at_1000
value: 43.830333333333336
- type: mrr_at_3
value: 40.29816666666667
- type: mrr_at_5
value: 41.81366666666667
- type: ndcg_at_1
value: 33.159083333333335
- type: ndcg_at_10
value: 44.75750000000001
- type: ndcg_at_100
value: 50.13658333333334
- type: ndcg_at_1000
value: 52.037
- type: ndcg_at_3
value: 39.34258333333334
- type: ndcg_at_5
value: 41.93708333333333
- type: precision_at_1
value: 33.159083333333335
- type: precision_at_10
value: 7.952416666666667
- type: precision_at_100
value: 1.2571666666666668
- type: precision_at_1000
value: 0.16099999999999998
- type: precision_at_3
value: 18.303833333333337
- type: precision_at_5
value: 13.057083333333333
- type: recall_at_1
value: 28.044333333333338
- type: recall_at_10
value: 58.237249999999996
- type: recall_at_100
value: 81.35391666666666
- type: recall_at_1000
value: 94.21283333333334
- type: recall_at_3
value: 43.32341666666667
- type: recall_at_5
value: 49.94908333333333
- type: map_at_1
value: 18.398
- type: map_at_10
value: 27.929
- type: map_at_100
value: 29.032999999999998
- type: map_at_1000
value: 29.126
- type: map_at_3
value: 25.070999999999998
- type: map_at_5
value: 26.583000000000002
- type: mrr_at_1
value: 19.963
- type: mrr_at_10
value: 29.997
- type: mrr_at_100
value: 30.9
- type: mrr_at_1000
value: 30.972
- type: mrr_at_3
value: 27.264
- type: mrr_at_5
value: 28.826
- type: ndcg_at_1
value: 19.963
- type: ndcg_at_10
value: 33.678999999999995
- type: ndcg_at_100
value: 38.931
- type: ndcg_at_1000
value: 41.379
- type: ndcg_at_3
value: 28.000000000000004
- type: ndcg_at_5
value: 30.637999999999998
- type: precision_at_1
value: 19.963
- type: precision_at_10
value: 5.7299999999999995
- type: precision_at_100
value: 0.902
- type: precision_at_1000
value: 0.122
- type: precision_at_3
value: 12.631
- type: precision_at_5
value: 9.057
- type: recall_at_1
value: 18.398
- type: recall_at_10
value: 49.254
- type: recall_at_100
value: 73.182
- type: recall_at_1000
value: 91.637
- type: recall_at_3
value: 34.06
- type: recall_at_5
value: 40.416000000000004
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackStatsRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
metrics:
- type: map_at_1
value: 27.838
- type: map_at_10
value: 36.04
- type: map_at_100
value: 37.113
- type: map_at_1000
value: 37.204
- type: map_at_3
value: 33.585
- type: map_at_5
value: 34.845
- type: mrr_at_1
value: 30.982
- type: mrr_at_10
value: 39.105000000000004
- type: mrr_at_100
value: 39.98
- type: mrr_at_1000
value: 40.042
- type: mrr_at_3
value: 36.912
- type: mrr_at_5
value: 38.062000000000005
- type: ndcg_at_1
value: 30.982
- type: ndcg_at_10
value: 40.982
- type: ndcg_at_100
value: 46.092
- type: ndcg_at_1000
value: 48.25
- type: ndcg_at_3
value: 36.41
- type: ndcg_at_5
value: 38.379999999999995
- type: precision_at_1
value: 30.982
- type: precision_at_10
value: 6.534
- type: precision_at_100
value: 0.9820000000000001
- type: precision_at_1000
value: 0.124
- type: precision_at_3
value: 15.745999999999999
- type: precision_at_5
value: 10.828
- type: recall_at_1
value: 27.838
- type: recall_at_10
value: 52.971000000000004
- type: recall_at_100
value: 76.357
- type: recall_at_1000
value: 91.973
- type: recall_at_3
value: 40.157
- type: recall_at_5
value: 45.147999999999996
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackTexRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: 46989137a86843e03a6195de44b09deda022eec7
metrics:
- type: map_at_1
value: 19.059
- type: map_at_10
value: 27.454
- type: map_at_100
value: 28.736
- type: map_at_1000
value: 28.865000000000002
- type: map_at_3
value: 24.773999999999997
- type: map_at_5
value: 26.266000000000002
- type: mrr_at_1
value: 23.125
- type: mrr_at_10
value: 31.267
- type: mrr_at_100
value: 32.32
- type: mrr_at_1000
value: 32.394
- type: mrr_at_3
value: 28.894
- type: mrr_at_5
value: 30.281000000000002
- type: ndcg_at_1
value: 23.125
- type: ndcg_at_10
value: 32.588
- type: ndcg_at_100
value: 38.432
- type: ndcg_at_1000
value: 41.214
- type: ndcg_at_3
value: 27.938000000000002
- type: ndcg_at_5
value: 30.127
- type: precision_at_1
value: 23.125
- type: precision_at_10
value: 5.9639999999999995
- type: precision_at_100
value: 1.047
- type: precision_at_1000
value: 0.148
- type: precision_at_3
value: 13.294
- type: precision_at_5
value: 9.628
- type: recall_at_1
value: 19.059
- type: recall_at_10
value: 44.25
- type: recall_at_100
value: 69.948
- type: recall_at_1000
value: 89.35300000000001
- type: recall_at_3
value: 31.114000000000004
- type: recall_at_5
value: 36.846000000000004
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackUnixRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
metrics:
- type: map_at_1
value: 28.355999999999998
- type: map_at_10
value: 39.055
- type: map_at_100
value: 40.486
- type: map_at_1000
value: 40.571
- type: map_at_3
value: 35.69
- type: map_at_5
value: 37.605
- type: mrr_at_1
value: 33.302
- type: mrr_at_10
value: 42.986000000000004
- type: mrr_at_100
value: 43.957
- type: mrr_at_1000
value: 43.996
- type: mrr_at_3
value: 40.111999999999995
- type: mrr_at_5
value: 41.735
- type: ndcg_at_1
value: 33.302
- type: ndcg_at_10
value: 44.962999999999994
- type: ndcg_at_100
value: 50.917
- type: ndcg_at_1000
value: 52.622
- type: ndcg_at_3
value: 39.182
- type: ndcg_at_5
value: 41.939
- type: precision_at_1
value: 33.302
- type: precision_at_10
value: 7.779999999999999
- type: precision_at_100
value: 1.203
- type: precision_at_1000
value: 0.145
- type: precision_at_3
value: 18.035
- type: precision_at_5
value: 12.873000000000001
- type: recall_at_1
value: 28.355999999999998
- type: recall_at_10
value: 58.782000000000004
- type: recall_at_100
value: 84.02199999999999
- type: recall_at_1000
value: 95.511
- type: recall_at_3
value: 43.126999999999995
- type: recall_at_5
value: 50.14999999999999
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWebmastersRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: 160c094312a0e1facb97e55eeddb698c0abe3571
metrics:
- type: map_at_1
value: 27.391
- type: map_at_10
value: 37.523
- type: map_at_100
value: 39.312000000000005
- type: map_at_1000
value: 39.54
- type: map_at_3
value: 34.231
- type: map_at_5
value: 36.062
- type: mrr_at_1
value: 32.016
- type: mrr_at_10
value: 41.747
- type: mrr_at_100
value: 42.812
- type: mrr_at_1000
value: 42.844
- type: mrr_at_3
value: 39.129999999999995
- type: mrr_at_5
value: 40.524
- type: ndcg_at_1
value: 32.016
- type: ndcg_at_10
value: 43.826
- type: ndcg_at_100
value: 50.373999999999995
- type: ndcg_at_1000
value: 52.318
- type: ndcg_at_3
value: 38.479
- type: ndcg_at_5
value: 40.944
- type: precision_at_1
value: 32.016
- type: precision_at_10
value: 8.280999999999999
- type: precision_at_100
value: 1.6760000000000002
- type: precision_at_1000
value: 0.25
- type: precision_at_3
value: 18.05
- type: precision_at_5
value: 13.083
- type: recall_at_1
value: 27.391
- type: recall_at_10
value: 56.928999999999995
- type: recall_at_100
value: 85.169
- type: recall_at_1000
value: 96.665
- type: recall_at_3
value: 42.264
- type: recall_at_5
value: 48.556
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER
type: mteb/climate-fever
config: default
split: test
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
metrics:
- type: map_at_1
value: 19.681
- type: map_at_10
value: 32.741
- type: map_at_100
value: 34.811
- type: map_at_1000
value: 35.003
- type: map_at_3
value: 27.697
- type: map_at_5
value: 30.372
- type: mrr_at_1
value: 44.951
- type: mrr_at_10
value: 56.34400000000001
- type: mrr_at_100
value: 56.961
- type: mrr_at_1000
value: 56.987
- type: mrr_at_3
value: 53.681
- type: mrr_at_5
value: 55.407
- type: ndcg_at_1
value: 44.951
- type: ndcg_at_10
value: 42.905
- type: ndcg_at_100
value: 49.95
- type: ndcg_at_1000
value: 52.917
- type: ndcg_at_3
value: 36.815
- type: ndcg_at_5
value: 38.817
- type: precision_at_1
value: 44.951
- type: precision_at_10
value: 12.989999999999998
- type: precision_at_100
value: 2.068
- type: precision_at_1000
value: 0.263
- type: precision_at_3
value: 27.275
- type: precision_at_5
value: 20.365
- type: recall_at_1
value: 19.681
- type: recall_at_10
value: 48.272999999999996
- type: recall_at_100
value: 71.87400000000001
- type: recall_at_1000
value: 87.929
- type: recall_at_3
value: 32.653999999999996
- type: recall_at_5
value: 39.364
- task:
type: Retrieval
dataset:
name: MTEB DBPedia
type: mteb/dbpedia
config: default
split: test
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
metrics:
- type: map_at_1
value: 10.231
- type: map_at_10
value: 22.338
- type: map_at_100
value: 31.927
- type: map_at_1000
value: 33.87
- type: map_at_3
value: 15.559999999999999
- type: map_at_5
value: 18.239
- type: mrr_at_1
value: 75
- type: mrr_at_10
value: 81.303
- type: mrr_at_100
value: 81.523
- type: mrr_at_1000
value: 81.53
- type: mrr_at_3
value: 80.083
- type: mrr_at_5
value: 80.758
- type: ndcg_at_1
value: 64.625
- type: ndcg_at_10
value: 48.687000000000005
- type: ndcg_at_100
value: 52.791
- type: ndcg_at_1000
value: 60.041999999999994
- type: ndcg_at_3
value: 53.757999999999996
- type: ndcg_at_5
value: 50.76500000000001
- type: precision_at_1
value: 75
- type: precision_at_10
value: 38.3
- type: precision_at_100
value: 12.025
- type: precision_at_1000
value: 2.3970000000000002
- type: precision_at_3
value: 55.417
- type: precision_at_5
value: 47.5
- type: recall_at_1
value: 10.231
- type: recall_at_10
value: 27.697
- type: recall_at_100
value: 57.409
- type: recall_at_1000
value: 80.547
- type: recall_at_3
value: 16.668
- type: recall_at_5
value: 20.552
- task:
type: Classification
dataset:
name: MTEB EmotionClassification
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 61.365
- type: f1
value: 56.7540827912991
- task:
type: Retrieval
dataset:
name: MTEB FEVER
type: mteb/fever
config: default
split: test
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
metrics:
- type: map_at_1
value: 83.479
- type: map_at_10
value: 88.898
- type: map_at_100
value: 89.11
- type: map_at_1000
value: 89.12400000000001
- type: map_at_3
value: 88.103
- type: map_at_5
value: 88.629
- type: mrr_at_1
value: 89.934
- type: mrr_at_10
value: 93.91000000000001
- type: mrr_at_100
value: 93.937
- type: mrr_at_1000
value: 93.938
- type: mrr_at_3
value: 93.62700000000001
- type: mrr_at_5
value: 93.84599999999999
- type: ndcg_at_1
value: 89.934
- type: ndcg_at_10
value: 91.574
- type: ndcg_at_100
value: 92.238
- type: ndcg_at_1000
value: 92.45
- type: ndcg_at_3
value: 90.586
- type: ndcg_at_5
value: 91.16300000000001
- type: precision_at_1
value: 89.934
- type: precision_at_10
value: 10.555
- type: precision_at_100
value: 1.1159999999999999
- type: precision_at_1000
value: 0.11499999999999999
- type: precision_at_3
value: 33.588
- type: precision_at_5
value: 20.642
- type: recall_at_1
value: 83.479
- type: recall_at_10
value: 94.971
- type: recall_at_100
value: 97.397
- type: recall_at_1000
value: 98.666
- type: recall_at_3
value: 92.24799999999999
- type: recall_at_5
value: 93.797
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018
type: mteb/fiqa
config: default
split: test
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
metrics:
- type: map_at_1
value: 27.16
- type: map_at_10
value: 45.593
- type: map_at_100
value: 47.762
- type: map_at_1000
value: 47.899
- type: map_at_3
value: 39.237
- type: map_at_5
value: 42.970000000000006
- type: mrr_at_1
value: 52.623
- type: mrr_at_10
value: 62.637
- type: mrr_at_100
value: 63.169
- type: mrr_at_1000
value: 63.185
- type: mrr_at_3
value: 59.928000000000004
- type: mrr_at_5
value: 61.702999999999996
- type: ndcg_at_1
value: 52.623
- type: ndcg_at_10
value: 54.701
- type: ndcg_at_100
value: 61.263
- type: ndcg_at_1000
value: 63.134
- type: ndcg_at_3
value: 49.265
- type: ndcg_at_5
value: 51.665000000000006
- type: precision_at_1
value: 52.623
- type: precision_at_10
value: 15.185
- type: precision_at_100
value: 2.202
- type: precision_at_1000
value: 0.254
- type: precision_at_3
value: 32.767
- type: precision_at_5
value: 24.722
- type: recall_at_1
value: 27.16
- type: recall_at_10
value: 63.309000000000005
- type: recall_at_100
value: 86.722
- type: recall_at_1000
value: 97.505
- type: recall_at_3
value: 45.045
- type: recall_at_5
value: 54.02400000000001
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA
type: mteb/hotpotqa
config: default
split: test
revision: ab518f4d6fcca38d87c25209f94beba119d02014
metrics:
- type: map_at_1
value: 42.573
- type: map_at_10
value: 59.373
- type: map_at_100
value: 60.292
- type: map_at_1000
value: 60.358999999999995
- type: map_at_3
value: 56.159000000000006
- type: map_at_5
value: 58.123999999999995
- type: mrr_at_1
value: 85.14500000000001
- type: mrr_at_10
value: 89.25999999999999
- type: mrr_at_100
value: 89.373
- type: mrr_at_1000
value: 89.377
- type: mrr_at_3
value: 88.618
- type: mrr_at_5
value: 89.036
- type: ndcg_at_1
value: 85.14500000000001
- type: ndcg_at_10
value: 68.95
- type: ndcg_at_100
value: 71.95
- type: ndcg_at_1000
value: 73.232
- type: ndcg_at_3
value: 64.546
- type: ndcg_at_5
value: 66.945
- type: precision_at_1
value: 85.14500000000001
- type: precision_at_10
value: 13.865
- type: precision_at_100
value: 1.619
- type: precision_at_1000
value: 0.179
- type: precision_at_3
value: 39.703
- type: precision_at_5
value: 25.718000000000004
- type: recall_at_1
value: 42.573
- type: recall_at_10
value: 69.325
- type: recall_at_100
value: 80.932
- type: recall_at_1000
value: 89.446
- type: recall_at_3
value: 59.553999999999995
- type: recall_at_5
value: 64.294
- task:
type: Classification
dataset:
name: MTEB ImdbClassification
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 95.8336
- type: ap
value: 93.78862962194073
- type: f1
value: 95.83192650728371
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO
type: mteb/msmarco
config: default
split: dev
revision: c5a29a104738b98a9e76336939199e264163d4a0
metrics:
- type: map_at_1
value: 23.075000000000003
- type: map_at_10
value: 36.102000000000004
- type: map_at_100
value: 37.257
- type: map_at_1000
value: 37.3
- type: map_at_3
value: 32.144
- type: map_at_5
value: 34.359
- type: mrr_at_1
value: 23.711
- type: mrr_at_10
value: 36.671
- type: mrr_at_100
value: 37.763999999999996
- type: mrr_at_1000
value: 37.801
- type: mrr_at_3
value: 32.775
- type: mrr_at_5
value: 34.977000000000004
- type: ndcg_at_1
value: 23.711
- type: ndcg_at_10
value: 43.361
- type: ndcg_at_100
value: 48.839
- type: ndcg_at_1000
value: 49.88
- type: ndcg_at_3
value: 35.269
- type: ndcg_at_5
value: 39.224
- type: precision_at_1
value: 23.711
- type: precision_at_10
value: 6.866999999999999
- type: precision_at_100
value: 0.96
- type: precision_at_1000
value: 0.105
- type: precision_at_3
value: 15.096000000000002
- type: precision_at_5
value: 11.083
- type: recall_at_1
value: 23.075000000000003
- type: recall_at_10
value: 65.756
- type: recall_at_100
value: 90.88199999999999
- type: recall_at_1000
value: 98.739
- type: recall_at_3
value: 43.691
- type: recall_at_5
value: 53.15800000000001
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 97.69493844049248
- type: f1
value: 97.55048089616261
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 88.75968992248062
- type: f1
value: 72.26321223399123
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 82.40080699394754
- type: f1
value: 79.62590029057968
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 84.49562878278414
- type: f1
value: 84.0040193313333
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 39.386760057101945
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 37.89687154075537
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking
type: mteb/mind_small
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 33.94151656057482
- type: mrr
value: 35.32684700746953
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus
type: mteb/nfcorpus
config: default
split: test
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
metrics:
- type: map_at_1
value: 6.239999999999999
- type: map_at_10
value: 14.862
- type: map_at_100
value: 18.955
- type: map_at_1000
value: 20.694000000000003
- type: map_at_3
value: 10.683
- type: map_at_5
value: 12.674
- type: mrr_at_1
value: 50.15500000000001
- type: mrr_at_10
value: 59.697
- type: mrr_at_100
value: 60.095
- type: mrr_at_1000
value: 60.129999999999995
- type: mrr_at_3
value: 58.35900000000001
- type: mrr_at_5
value: 58.839
- type: ndcg_at_1
value: 48.452
- type: ndcg_at_10
value: 39.341
- type: ndcg_at_100
value: 35.866
- type: ndcg_at_1000
value: 45.111000000000004
- type: ndcg_at_3
value: 44.527
- type: ndcg_at_5
value: 42.946
- type: precision_at_1
value: 50.15500000000001
- type: precision_at_10
value: 29.536
- type: precision_at_100
value: 9.142
- type: precision_at_1000
value: 2.2849999999999997
- type: precision_at_3
value: 41.899
- type: precision_at_5
value: 37.647000000000006
- type: recall_at_1
value: 6.239999999999999
- type: recall_at_10
value: 19.278000000000002
- type: recall_at_100
value: 36.074
- type: recall_at_1000
value: 70.017
- type: recall_at_3
value: 12.066
- type: recall_at_5
value: 15.254000000000001
- task:
type: Retrieval
dataset:
name: MTEB NQ
type: mteb/nq
config: default
split: test
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
metrics:
- type: map_at_1
value: 39.75
- type: map_at_10
value: 56.443
- type: map_at_100
value: 57.233999999999995
- type: map_at_1000
value: 57.249
- type: map_at_3
value: 52.032999999999994
- type: map_at_5
value: 54.937999999999995
- type: mrr_at_1
value: 44.728
- type: mrr_at_10
value: 58.939
- type: mrr_at_100
value: 59.489000000000004
- type: mrr_at_1000
value: 59.499
- type: mrr_at_3
value: 55.711999999999996
- type: mrr_at_5
value: 57.89
- type: ndcg_at_1
value: 44.728
- type: ndcg_at_10
value: 63.998999999999995
- type: ndcg_at_100
value: 67.077
- type: ndcg_at_1000
value: 67.40899999999999
- type: ndcg_at_3
value: 56.266000000000005
- type: ndcg_at_5
value: 60.88
- type: precision_at_1
value: 44.728
- type: precision_at_10
value: 10.09
- type: precision_at_100
value: 1.1809999999999998
- type: precision_at_1000
value: 0.121
- type: precision_at_3
value: 25.145
- type: precision_at_5
value: 17.822
- type: recall_at_1
value: 39.75
- type: recall_at_10
value: 84.234
- type: recall_at_100
value: 97.055
- type: recall_at_1000
value: 99.517
- type: recall_at_3
value: 64.851
- type: recall_at_5
value: 75.343
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval
type: mteb/quora
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 72.085
- type: map_at_10
value: 86.107
- type: map_at_100
value: 86.727
- type: map_at_1000
value: 86.74
- type: map_at_3
value: 83.21
- type: map_at_5
value: 85.06
- type: mrr_at_1
value: 82.94
- type: mrr_at_10
value: 88.845
- type: mrr_at_100
value: 88.926
- type: mrr_at_1000
value: 88.927
- type: mrr_at_3
value: 87.993
- type: mrr_at_5
value: 88.62299999999999
- type: ndcg_at_1
value: 82.97
- type: ndcg_at_10
value: 89.645
- type: ndcg_at_100
value: 90.717
- type: ndcg_at_1000
value: 90.78
- type: ndcg_at_3
value: 86.99900000000001
- type: ndcg_at_5
value: 88.52600000000001
- type: precision_at_1
value: 82.97
- type: precision_at_10
value: 13.569
- type: precision_at_100
value: 1.539
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 38.043
- type: precision_at_5
value: 24.992
- type: recall_at_1
value: 72.085
- type: recall_at_10
value: 96.262
- type: recall_at_100
value: 99.77000000000001
- type: recall_at_1000
value: 99.997
- type: recall_at_3
value: 88.652
- type: recall_at_5
value: 93.01899999999999
- task:
type: Clustering
dataset:
name: MTEB RedditClustering
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 55.82153952668092
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 62.094465801879295
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS
type: mteb/scidocs
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 5.688
- type: map_at_10
value: 15.201999999999998
- type: map_at_100
value: 18.096
- type: map_at_1000
value: 18.481
- type: map_at_3
value: 10.734
- type: map_at_5
value: 12.94
- type: mrr_at_1
value: 28.000000000000004
- type: mrr_at_10
value: 41.101
- type: mrr_at_100
value: 42.202
- type: mrr_at_1000
value: 42.228
- type: mrr_at_3
value: 37.683
- type: mrr_at_5
value: 39.708
- type: ndcg_at_1
value: 28.000000000000004
- type: ndcg_at_10
value: 24.976000000000003
- type: ndcg_at_100
value: 35.129
- type: ndcg_at_1000
value: 40.77
- type: ndcg_at_3
value: 23.787
- type: ndcg_at_5
value: 20.816000000000003
- type: precision_at_1
value: 28.000000000000004
- type: precision_at_10
value: 13.04
- type: precision_at_100
value: 2.761
- type: precision_at_1000
value: 0.41000000000000003
- type: precision_at_3
value: 22.6
- type: precision_at_5
value: 18.52
- type: recall_at_1
value: 5.688
- type: recall_at_10
value: 26.43
- type: recall_at_100
value: 56.02
- type: recall_at_1000
value: 83.21
- type: recall_at_3
value: 13.752
- type: recall_at_5
value: 18.777
- task:
type: STS
dataset:
name: MTEB SICK-R
type: mteb/sickr-sts
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 85.15084859283178
- type: cos_sim_spearman
value: 80.49030614009419
- type: euclidean_pearson
value: 81.84574978672468
- type: euclidean_spearman
value: 79.89787150656818
- type: manhattan_pearson
value: 81.63076538567131
- type: manhattan_spearman
value: 79.69867352121841
- task:
type: STS
dataset:
name: MTEB STS12
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 84.64097921490992
- type: cos_sim_spearman
value: 77.25370084896514
- type: euclidean_pearson
value: 82.71210826468788
- type: euclidean_spearman
value: 78.50445584994826
- type: manhattan_pearson
value: 82.92580164330298
- type: manhattan_spearman
value: 78.69686891301019
- task:
type: STS
dataset:
name: MTEB STS13
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 87.24596417308994
- type: cos_sim_spearman
value: 87.79454220555091
- type: euclidean_pearson
value: 87.40242561671164
- type: euclidean_spearman
value: 88.25955597373556
- type: manhattan_pearson
value: 87.25160240485849
- type: manhattan_spearman
value: 88.155794979818
- task:
type: STS
dataset:
name: MTEB STS14
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 84.44914233422564
- type: cos_sim_spearman
value: 82.91015471820322
- type: euclidean_pearson
value: 84.7206656630327
- type: euclidean_spearman
value: 83.86408872059216
- type: manhattan_pearson
value: 84.72816725158454
- type: manhattan_spearman
value: 84.01603388572788
- task:
type: STS
dataset:
name: MTEB STS15
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 87.6168026237477
- type: cos_sim_spearman
value: 88.45414278092397
- type: euclidean_pearson
value: 88.57023240882022
- type: euclidean_spearman
value: 89.04102190922094
- type: manhattan_pearson
value: 88.66695535796354
- type: manhattan_spearman
value: 89.19898476680969
- task:
type: STS
dataset:
name: MTEB STS16
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 84.27925826089424
- type: cos_sim_spearman
value: 85.45291099550461
- type: euclidean_pearson
value: 83.63853036580834
- type: euclidean_spearman
value: 84.33468035821484
- type: manhattan_pearson
value: 83.72778773251596
- type: manhattan_spearman
value: 84.51583132445376
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 89.67375185692552
- type: cos_sim_spearman
value: 90.32542469203855
- type: euclidean_pearson
value: 89.63513717951847
- type: euclidean_spearman
value: 89.87760271003745
- type: manhattan_pearson
value: 89.28381452982924
- type: manhattan_spearman
value: 89.53568197785721
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 66.24644693819846
- type: cos_sim_spearman
value: 66.09889420525377
- type: euclidean_pearson
value: 63.72551583520747
- type: euclidean_spearman
value: 63.01385470780679
- type: manhattan_pearson
value: 64.09258157214097
- type: manhattan_spearman
value: 63.080517752822594
- task:
type: STS
dataset:
name: MTEB STSBenchmark
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 86.27321463839989
- type: cos_sim_spearman
value: 86.37572865993327
- type: euclidean_pearson
value: 86.36268020198149
- type: euclidean_spearman
value: 86.31089339478922
- type: manhattan_pearson
value: 86.4260445761947
- type: manhattan_spearman
value: 86.45885895320457
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 86.52456702387798
- type: mrr
value: 96.34556529164372
- task:
type: Retrieval
dataset:
name: MTEB SciFact
type: mteb/scifact
config: default
split: test
revision: 0228b52cf27578f30900b9e5271d331663a030d7
metrics:
- type: map_at_1
value: 61.99400000000001
- type: map_at_10
value: 73.38799999999999
- type: map_at_100
value: 73.747
- type: map_at_1000
value: 73.75
- type: map_at_3
value: 70.04599999999999
- type: map_at_5
value: 72.095
- type: mrr_at_1
value: 65
- type: mrr_at_10
value: 74.42800000000001
- type: mrr_at_100
value: 74.722
- type: mrr_at_1000
value: 74.725
- type: mrr_at_3
value: 72.056
- type: mrr_at_5
value: 73.60600000000001
- type: ndcg_at_1
value: 65
- type: ndcg_at_10
value: 78.435
- type: ndcg_at_100
value: 79.922
- type: ndcg_at_1000
value: 80.00500000000001
- type: ndcg_at_3
value: 73.05199999999999
- type: ndcg_at_5
value: 75.98
- type: precision_at_1
value: 65
- type: precision_at_10
value: 10.5
- type: precision_at_100
value: 1.123
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 28.555999999999997
- type: precision_at_5
value: 19
- type: recall_at_1
value: 61.99400000000001
- type: recall_at_10
value: 92.72200000000001
- type: recall_at_100
value: 99.333
- type: recall_at_1000
value: 100
- type: recall_at_3
value: 78.739
- type: recall_at_5
value: 85.828
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.79009900990098
- type: cos_sim_ap
value: 95.3203137438653
- type: cos_sim_f1
value: 89.12386706948641
- type: cos_sim_precision
value: 89.75659229208925
- type: cos_sim_recall
value: 88.5
- type: dot_accuracy
value: 99.67821782178218
- type: dot_ap
value: 89.94069840000675
- type: dot_f1
value: 83.45902463549521
- type: dot_precision
value: 83.9231547017189
- type: dot_recall
value: 83
- type: euclidean_accuracy
value: 99.78613861386138
- type: euclidean_ap
value: 95.10648259135526
- type: euclidean_f1
value: 88.77338877338877
- type: euclidean_precision
value: 92.42424242424242
- type: euclidean_recall
value: 85.39999999999999
- type: manhattan_accuracy
value: 99.7950495049505
- type: manhattan_ap
value: 95.29987661320946
- type: manhattan_f1
value: 89.21313183949972
- type: manhattan_precision
value: 93.14472252448314
- type: manhattan_recall
value: 85.6
- type: max_accuracy
value: 99.7950495049505
- type: max_ap
value: 95.3203137438653
- type: max_f1
value: 89.21313183949972
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 67.65446577183913
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 46.30749237193961
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 54.91481849959949
- type: mrr
value: 55.853506175197346
- task:
type: Summarization
dataset:
name: MTEB SummEval
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 30.08196549170419
- type: cos_sim_spearman
value: 31.16661390597077
- type: dot_pearson
value: 29.892258410943466
- type: dot_spearman
value: 30.51328811965085
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID
type: mteb/trec-covid
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.23900000000000002
- type: map_at_10
value: 2.173
- type: map_at_100
value: 14.24
- type: map_at_1000
value: 35.309000000000005
- type: map_at_3
value: 0.7100000000000001
- type: map_at_5
value: 1.163
- type: mrr_at_1
value: 92
- type: mrr_at_10
value: 96
- type: mrr_at_100
value: 96
- type: mrr_at_1000
value: 96
- type: mrr_at_3
value: 96
- type: mrr_at_5
value: 96
- type: ndcg_at_1
value: 90
- type: ndcg_at_10
value: 85.382
- type: ndcg_at_100
value: 68.03
- type: ndcg_at_1000
value: 61.021
- type: ndcg_at_3
value: 89.765
- type: ndcg_at_5
value: 88.444
- type: precision_at_1
value: 92
- type: precision_at_10
value: 88
- type: precision_at_100
value: 70.02000000000001
- type: precision_at_1000
value: 26.984
- type: precision_at_3
value: 94
- type: precision_at_5
value: 92.80000000000001
- type: recall_at_1
value: 0.23900000000000002
- type: recall_at_10
value: 2.313
- type: recall_at_100
value: 17.049
- type: recall_at_1000
value: 57.489999999999995
- type: recall_at_3
value: 0.737
- type: recall_at_5
value: 1.221
- task:
type: Retrieval
dataset:
name: MTEB Touche2020
type: mteb/touche2020
config: default
split: test
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
metrics:
- type: map_at_1
value: 2.75
- type: map_at_10
value: 11.29
- type: map_at_100
value: 18.032999999999998
- type: map_at_1000
value: 19.746
- type: map_at_3
value: 6.555
- type: map_at_5
value: 8.706999999999999
- type: mrr_at_1
value: 34.694
- type: mrr_at_10
value: 50.55
- type: mrr_at_100
value: 51.659
- type: mrr_at_1000
value: 51.659
- type: mrr_at_3
value: 47.278999999999996
- type: mrr_at_5
value: 49.728
- type: ndcg_at_1
value: 32.653
- type: ndcg_at_10
value: 27.894000000000002
- type: ndcg_at_100
value: 39.769
- type: ndcg_at_1000
value: 51.495999999999995
- type: ndcg_at_3
value: 32.954
- type: ndcg_at_5
value: 31.502999999999997
- type: precision_at_1
value: 34.694
- type: precision_at_10
value: 23.265
- type: precision_at_100
value: 7.898
- type: precision_at_1000
value: 1.58
- type: precision_at_3
value: 34.694
- type: precision_at_5
value: 31.429000000000002
- type: recall_at_1
value: 2.75
- type: recall_at_10
value: 16.953
- type: recall_at_100
value: 48.68
- type: recall_at_1000
value: 85.18599999999999
- type: recall_at_3
value: 7.710999999999999
- type: recall_at_5
value: 11.484
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification
type: mteb/toxic_conversations_50k
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 82.66099999999999
- type: ap
value: 25.555698090238337
- type: f1
value: 66.48402012461622
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 72.94567062818335
- type: f1
value: 73.28139189595674
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 49.581627240203474
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 87.78089050485785
- type: cos_sim_ap
value: 79.64487116574168
- type: cos_sim_f1
value: 72.46563021970964
- type: cos_sim_precision
value: 70.62359128474831
- type: cos_sim_recall
value: 74.40633245382587
- type: dot_accuracy
value: 86.2609524944865
- type: dot_ap
value: 75.513046857613
- type: dot_f1
value: 68.58213616489695
- type: dot_precision
value: 65.12455516014235
- type: dot_recall
value: 72.42744063324538
- type: euclidean_accuracy
value: 87.6080348095607
- type: euclidean_ap
value: 79.00204933649795
- type: euclidean_f1
value: 72.14495342605589
- type: euclidean_precision
value: 69.85421299728193
- type: euclidean_recall
value: 74.5910290237467
- type: manhattan_accuracy
value: 87.59611372712642
- type: manhattan_ap
value: 78.78523756706264
- type: manhattan_f1
value: 71.86499137718648
- type: manhattan_precision
value: 67.39833641404806
- type: manhattan_recall
value: 76.96569920844327
- type: max_accuracy
value: 87.78089050485785
- type: max_ap
value: 79.64487116574168
- type: max_f1
value: 72.46563021970964
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 89.98719292117825
- type: cos_sim_ap
value: 87.58146137353202
- type: cos_sim_f1
value: 80.28543232369239
- type: cos_sim_precision
value: 79.1735289714029
- type: cos_sim_recall
value: 81.42901139513397
- type: dot_accuracy
value: 88.9199363526992
- type: dot_ap
value: 84.98499998630417
- type: dot_f1
value: 78.21951400757969
- type: dot_precision
value: 75.58523624874336
- type: dot_recall
value: 81.04404065291038
- type: euclidean_accuracy
value: 89.77374160748244
- type: euclidean_ap
value: 87.35151562835209
- type: euclidean_f1
value: 79.92160922940393
- type: euclidean_precision
value: 76.88531587933979
- type: euclidean_recall
value: 83.20757622420696
- type: manhattan_accuracy
value: 89.72717041176699
- type: manhattan_ap
value: 87.34065592142515
- type: manhattan_f1
value: 79.85603419187943
- type: manhattan_precision
value: 77.82243332115455
- type: manhattan_recall
value: 81.99876809362489
- type: max_accuracy
value: 89.98719292117825
- type: max_ap
value: 87.58146137353202
- type: max_f1
value: 80.28543232369239
- task:
type: STS
dataset:
name: MTEB AFQMC
type: C-MTEB/AFQMC
config: default
split: validation
revision: b44c3b011063adb25877c13823db83bb193913c4
metrics:
- type: cos_sim_pearson
value: 53.45954203592337
- type: cos_sim_spearman
value: 58.42154680418638
- type: euclidean_pearson
value: 56.41543791722753
- type: euclidean_spearman
value: 58.39328016640146
- type: manhattan_pearson
value: 56.318510356833876
- type: manhattan_spearman
value: 58.28423447818184
- task:
type: STS
dataset:
name: MTEB ATEC
type: C-MTEB/ATEC
config: default
split: test
revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
metrics:
- type: cos_sim_pearson
value: 50.78356460675945
- type: cos_sim_spearman
value: 55.6530411663269
- type: euclidean_pearson
value: 56.50763660417816
- type: euclidean_spearman
value: 55.733823335669065
- type: manhattan_pearson
value: 56.45323093512866
- type: manhattan_spearman
value: 55.63248619032702
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (zh)
type: mteb/amazon_reviews_multi
config: zh
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 47.209999999999994
- type: f1
value: 46.08892432018655
- task:
type: STS
dataset:
name: MTEB BQ
type: C-MTEB/BQ
config: default
split: test
revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
metrics:
- type: cos_sim_pearson
value: 70.25573992001478
- type: cos_sim_spearman
value: 73.85247134951433
- type: euclidean_pearson
value: 72.60033082168442
- type: euclidean_spearman
value: 73.72445893756499
- type: manhattan_pearson
value: 72.59932284620231
- type: manhattan_spearman
value: 73.68002490614583
- task:
type: Clustering
dataset:
name: MTEB CLSClusteringP2P
type: C-MTEB/CLSClusteringP2P
config: default
split: test
revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
metrics:
- type: v_measure
value: 45.21317724305628
- task:
type: Clustering
dataset:
name: MTEB CLSClusteringS2S
type: C-MTEB/CLSClusteringS2S
config: default
split: test
revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
metrics:
- type: v_measure
value: 42.49825170976724
- task:
type: Reranking
dataset:
name: MTEB CMedQAv1
type: C-MTEB/CMedQAv1-reranking
config: default
split: test
revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
metrics:
- type: map
value: 88.15661686810597
- type: mrr
value: 90.11222222222223
- task:
type: Reranking
dataset:
name: MTEB CMedQAv2
type: C-MTEB/CMedQAv2-reranking
config: default
split: test
revision: 23d186750531a14a0357ca22cd92d712fd512ea0
metrics:
- type: map
value: 88.1204726064383
- type: mrr
value: 90.20142857142858
- task:
type: Retrieval
dataset:
name: MTEB CmedqaRetrieval
type: C-MTEB/CmedqaRetrieval
config: default
split: dev
revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
metrics:
- type: map_at_1
value: 27.224999999999998
- type: map_at_10
value: 40.169
- type: map_at_100
value: 42
- type: map_at_1000
value: 42.109
- type: map_at_3
value: 35.76
- type: map_at_5
value: 38.221
- type: mrr_at_1
value: 40.56
- type: mrr_at_10
value: 49.118
- type: mrr_at_100
value: 50.092999999999996
- type: mrr_at_1000
value: 50.133
- type: mrr_at_3
value: 46.507
- type: mrr_at_5
value: 47.973
- type: ndcg_at_1
value: 40.56
- type: ndcg_at_10
value: 46.972
- type: ndcg_at_100
value: 54.04
- type: ndcg_at_1000
value: 55.862
- type: ndcg_at_3
value: 41.36
- type: ndcg_at_5
value: 43.704
- type: precision_at_1
value: 40.56
- type: precision_at_10
value: 10.302999999999999
- type: precision_at_100
value: 1.606
- type: precision_at_1000
value: 0.184
- type: precision_at_3
value: 23.064
- type: precision_at_5
value: 16.764000000000003
- type: recall_at_1
value: 27.224999999999998
- type: recall_at_10
value: 58.05200000000001
- type: recall_at_100
value: 87.092
- type: recall_at_1000
value: 99.099
- type: recall_at_3
value: 41.373
- type: recall_at_5
value: 48.453
- task:
type: PairClassification
dataset:
name: MTEB Cmnli
type: C-MTEB/CMNLI
config: default
split: validation
revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
metrics:
- type: cos_sim_accuracy
value: 77.40228502705953
- type: cos_sim_ap
value: 86.22359172956327
- type: cos_sim_f1
value: 78.96328293736501
- type: cos_sim_precision
value: 73.36945615091311
- type: cos_sim_recall
value: 85.48047696983868
- type: dot_accuracy
value: 75.53818400481059
- type: dot_ap
value: 83.70164011305312
- type: dot_f1
value: 77.67298719348754
- type: dot_precision
value: 67.49482401656314
- type: dot_recall
value: 91.46598082768296
- type: euclidean_accuracy
value: 77.94347564642213
- type: euclidean_ap
value: 86.4652108728609
- type: euclidean_f1
value: 79.15555555555555
- type: euclidean_precision
value: 75.41816641964853
- type: euclidean_recall
value: 83.28267477203647
- type: manhattan_accuracy
value: 77.45039085989175
- type: manhattan_ap
value: 86.09986583900665
- type: manhattan_f1
value: 78.93669264438988
- type: manhattan_precision
value: 72.63261296660117
- type: manhattan_recall
value: 86.43909282207154
- type: max_accuracy
value: 77.94347564642213
- type: max_ap
value: 86.4652108728609
- type: max_f1
value: 79.15555555555555
- task:
type: Retrieval
dataset:
name: MTEB CovidRetrieval
type: C-MTEB/CovidRetrieval
config: default
split: dev
revision: 1271c7809071a13532e05f25fb53511ffce77117
metrics:
- type: map_at_1
value: 69.336
- type: map_at_10
value: 77.16
- type: map_at_100
value: 77.47500000000001
- type: map_at_1000
value: 77.482
- type: map_at_3
value: 75.42999999999999
- type: map_at_5
value: 76.468
- type: mrr_at_1
value: 69.44200000000001
- type: mrr_at_10
value: 77.132
- type: mrr_at_100
value: 77.43299999999999
- type: mrr_at_1000
value: 77.44
- type: mrr_at_3
value: 75.395
- type: mrr_at_5
value: 76.459
- type: ndcg_at_1
value: 69.547
- type: ndcg_at_10
value: 80.794
- type: ndcg_at_100
value: 82.245
- type: ndcg_at_1000
value: 82.40899999999999
- type: ndcg_at_3
value: 77.303
- type: ndcg_at_5
value: 79.168
- type: precision_at_1
value: 69.547
- type: precision_at_10
value: 9.305
- type: precision_at_100
value: 0.9979999999999999
- type: precision_at_1000
value: 0.101
- type: precision_at_3
value: 27.749000000000002
- type: precision_at_5
value: 17.576
- type: recall_at_1
value: 69.336
- type: recall_at_10
value: 92.097
- type: recall_at_100
value: 98.736
- type: recall_at_1000
value: 100
- type: recall_at_3
value: 82.64
- type: recall_at_5
value: 87.144
- task:
type: Retrieval
dataset:
name: MTEB DuRetrieval
type: C-MTEB/DuRetrieval
config: default
split: dev
revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
metrics:
- type: map_at_1
value: 26.817999999999998
- type: map_at_10
value: 82.67
- type: map_at_100
value: 85.304
- type: map_at_1000
value: 85.334
- type: map_at_3
value: 57.336
- type: map_at_5
value: 72.474
- type: mrr_at_1
value: 91.45
- type: mrr_at_10
value: 94.272
- type: mrr_at_100
value: 94.318
- type: mrr_at_1000
value: 94.32000000000001
- type: mrr_at_3
value: 94
- type: mrr_at_5
value: 94.17699999999999
- type: ndcg_at_1
value: 91.45
- type: ndcg_at_10
value: 89.404
- type: ndcg_at_100
value: 91.724
- type: ndcg_at_1000
value: 91.973
- type: ndcg_at_3
value: 88.104
- type: ndcg_at_5
value: 87.25699999999999
- type: precision_at_1
value: 91.45
- type: precision_at_10
value: 42.585
- type: precision_at_100
value: 4.838
- type: precision_at_1000
value: 0.49
- type: precision_at_3
value: 78.8
- type: precision_at_5
value: 66.66
- type: recall_at_1
value: 26.817999999999998
- type: recall_at_10
value: 90.67
- type: recall_at_100
value: 98.36200000000001
- type: recall_at_1000
value: 99.583
- type: recall_at_3
value: 59.614999999999995
- type: recall_at_5
value: 77.05199999999999
- task:
type: Retrieval
dataset:
name: MTEB EcomRetrieval
type: C-MTEB/EcomRetrieval
config: default
split: dev
revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
metrics:
- type: map_at_1
value: 47.699999999999996
- type: map_at_10
value: 57.589999999999996
- type: map_at_100
value: 58.226
- type: map_at_1000
value: 58.251
- type: map_at_3
value: 55.233
- type: map_at_5
value: 56.633
- type: mrr_at_1
value: 47.699999999999996
- type: mrr_at_10
value: 57.589999999999996
- type: mrr_at_100
value: 58.226
- type: mrr_at_1000
value: 58.251
- type: mrr_at_3
value: 55.233
- type: mrr_at_5
value: 56.633
- type: ndcg_at_1
value: 47.699999999999996
- type: ndcg_at_10
value: 62.505
- type: ndcg_at_100
value: 65.517
- type: ndcg_at_1000
value: 66.19800000000001
- type: ndcg_at_3
value: 57.643
- type: ndcg_at_5
value: 60.181
- type: precision_at_1
value: 47.699999999999996
- type: precision_at_10
value: 7.8
- type: precision_at_100
value: 0.919
- type: precision_at_1000
value: 0.097
- type: precision_at_3
value: 21.532999999999998
- type: precision_at_5
value: 14.16
- type: recall_at_1
value: 47.699999999999996
- type: recall_at_10
value: 78
- type: recall_at_100
value: 91.9
- type: recall_at_1000
value: 97.3
- type: recall_at_3
value: 64.60000000000001
- type: recall_at_5
value: 70.8
- task:
type: Classification
dataset:
name: MTEB IFlyTek
type: C-MTEB/IFlyTek-classification
config: default
split: validation
revision: 421605374b29664c5fc098418fe20ada9bd55f8a
metrics:
- type: accuracy
value: 44.84801846864178
- type: f1
value: 37.47347897956339
- task:
type: Classification
dataset:
name: MTEB JDReview
type: C-MTEB/JDReview-classification
config: default
split: test
revision: b7c64bd89eb87f8ded463478346f76731f07bf8b
metrics:
- type: accuracy
value: 85.81613508442777
- type: ap
value: 52.68244615477374
- type: f1
value: 80.0445640948843
- task:
type: STS
dataset:
name: MTEB LCQMC
type: C-MTEB/LCQMC
config: default
split: test
revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
metrics:
- type: cos_sim_pearson
value: 69.57786502217138
- type: cos_sim_spearman
value: 75.39106054489906
- type: euclidean_pearson
value: 73.72082954602402
- type: euclidean_spearman
value: 75.14421475913619
- type: manhattan_pearson
value: 73.62463076633642
- type: manhattan_spearman
value: 75.01301565104112
- task:
type: Reranking
dataset:
name: MTEB MMarcoReranking
type: C-MTEB/Mmarco-reranking
config: default
split: dev
revision: None
metrics:
- type: map
value: 29.143797057999134
- type: mrr
value: 28.08174603174603
- task:
type: Retrieval
dataset:
name: MTEB MMarcoRetrieval
type: C-MTEB/MMarcoRetrieval
config: default
split: dev
revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
metrics:
- type: map_at_1
value: 70.492
- type: map_at_10
value: 79.501
- type: map_at_100
value: 79.728
- type: map_at_1000
value: 79.735
- type: map_at_3
value: 77.77
- type: map_at_5
value: 78.851
- type: mrr_at_1
value: 72.822
- type: mrr_at_10
value: 80.001
- type: mrr_at_100
value: 80.19
- type: mrr_at_1000
value: 80.197
- type: mrr_at_3
value: 78.484
- type: mrr_at_5
value: 79.42099999999999
- type: ndcg_at_1
value: 72.822
- type: ndcg_at_10
value: 83.013
- type: ndcg_at_100
value: 84.013
- type: ndcg_at_1000
value: 84.20400000000001
- type: ndcg_at_3
value: 79.728
- type: ndcg_at_5
value: 81.542
- type: precision_at_1
value: 72.822
- type: precision_at_10
value: 9.917
- type: precision_at_100
value: 1.042
- type: precision_at_1000
value: 0.106
- type: precision_at_3
value: 29.847
- type: precision_at_5
value: 18.871
- type: recall_at_1
value: 70.492
- type: recall_at_10
value: 93.325
- type: recall_at_100
value: 97.822
- type: recall_at_1000
value: 99.319
- type: recall_at_3
value: 84.636
- type: recall_at_5
value: 88.93100000000001
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (zh-CN)
type: mteb/amazon_massive_intent
config: zh-CN
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 76.88298587760592
- type: f1
value: 73.89001762017176
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (zh-CN)
type: mteb/amazon_massive_scenario
config: zh-CN
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 80.76328177538669
- type: f1
value: 80.24718532423358
- task:
type: Retrieval
dataset:
name: MTEB MedicalRetrieval
type: C-MTEB/MedicalRetrieval
config: default
split: dev
revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
metrics:
- type: map_at_1
value: 49.6
- type: map_at_10
value: 55.620999999999995
- type: map_at_100
value: 56.204
- type: map_at_1000
value: 56.251
- type: map_at_3
value: 54.132999999999996
- type: map_at_5
value: 54.933
- type: mrr_at_1
value: 49.7
- type: mrr_at_10
value: 55.67100000000001
- type: mrr_at_100
value: 56.254000000000005
- type: mrr_at_1000
value: 56.301
- type: mrr_at_3
value: 54.18300000000001
- type: mrr_at_5
value: 54.983000000000004
- type: ndcg_at_1
value: 49.6
- type: ndcg_at_10
value: 58.645
- type: ndcg_at_100
value: 61.789
- type: ndcg_at_1000
value: 63.219
- type: ndcg_at_3
value: 55.567
- type: ndcg_at_5
value: 57.008
- type: precision_at_1
value: 49.6
- type: precision_at_10
value: 6.819999999999999
- type: precision_at_100
value: 0.836
- type: precision_at_1000
value: 0.095
- type: precision_at_3
value: 19.900000000000002
- type: precision_at_5
value: 12.64
- type: recall_at_1
value: 49.6
- type: recall_at_10
value: 68.2
- type: recall_at_100
value: 83.6
- type: recall_at_1000
value: 95.3
- type: recall_at_3
value: 59.699999999999996
- type: recall_at_5
value: 63.2
- task:
type: Classification
dataset:
name: MTEB MultilingualSentiment
type: C-MTEB/MultilingualSentiment-classification
config: default
split: validation
revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
metrics:
- type: accuracy
value: 74.45666666666666
- type: f1
value: 74.32582402190089
- task:
type: PairClassification
dataset:
name: MTEB Ocnli
type: C-MTEB/OCNLI
config: default
split: validation
revision: 66e76a618a34d6d565d5538088562851e6daa7ec
metrics:
- type: cos_sim_accuracy
value: 80.67135896047645
- type: cos_sim_ap
value: 87.60421240712051
- type: cos_sim_f1
value: 82.1304131408661
- type: cos_sim_precision
value: 77.68361581920904
- type: cos_sim_recall
value: 87.11721224920802
- type: dot_accuracy
value: 79.04710341093666
- type: dot_ap
value: 85.6370059719336
- type: dot_f1
value: 80.763723150358
- type: dot_precision
value: 73.69337979094077
- type: dot_recall
value: 89.33474128827878
- type: euclidean_accuracy
value: 81.05035192203573
- type: euclidean_ap
value: 87.7880240053663
- type: euclidean_f1
value: 82.50244379276637
- type: euclidean_precision
value: 76.7970882620564
- type: euclidean_recall
value: 89.1235480464625
- type: manhattan_accuracy
value: 80.61721710882512
- type: manhattan_ap
value: 87.43568120591175
- type: manhattan_f1
value: 81.89526184538653
- type: manhattan_precision
value: 77.5992438563327
- type: manhattan_recall
value: 86.6948257655755
- type: max_accuracy
value: 81.05035192203573
- type: max_ap
value: 87.7880240053663
- type: max_f1
value: 82.50244379276637
- task:
type: Classification
dataset:
name: MTEB OnlineShopping
type: C-MTEB/OnlineShopping-classification
config: default
split: test
revision: e610f2ebd179a8fda30ae534c3878750a96db120
metrics:
- type: accuracy
value: 93.5
- type: ap
value: 91.31357903446782
- type: f1
value: 93.48088994006616
- task:
type: STS
dataset:
name: MTEB PAWSX
type: C-MTEB/PAWSX
config: default
split: test
revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
metrics:
- type: cos_sim_pearson
value: 36.93293453538077
- type: cos_sim_spearman
value: 42.45972506308574
- type: euclidean_pearson
value: 42.34945133152159
- type: euclidean_spearman
value: 42.331610303674644
- type: manhattan_pearson
value: 42.31455070249498
- type: manhattan_spearman
value: 42.19887982891834
- task:
type: STS
dataset:
name: MTEB QBQTC
type: C-MTEB/QBQTC
config: default
split: test
revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
metrics:
- type: cos_sim_pearson
value: 33.683290790043785
- type: cos_sim_spearman
value: 35.149171171202994
- type: euclidean_pearson
value: 32.33806561267862
- type: euclidean_spearman
value: 34.483576387347966
- type: manhattan_pearson
value: 32.47629754599608
- type: manhattan_spearman
value: 34.66434471867615
- task:
type: STS
dataset:
name: MTEB STS22 (zh)
type: mteb/sts22-crosslingual-sts
config: zh
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 66.46322760516104
- type: cos_sim_spearman
value: 67.398478319726
- type: euclidean_pearson
value: 64.7223480293625
- type: euclidean_spearman
value: 66.83118568812951
- type: manhattan_pearson
value: 64.88440039828305
- type: manhattan_spearman
value: 66.80429458952257
- task:
type: STS
dataset:
name: MTEB STSB
type: C-MTEB/STSB
config: default
split: test
revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
metrics:
- type: cos_sim_pearson
value: 79.08991383232105
- type: cos_sim_spearman
value: 79.39715677296854
- type: euclidean_pearson
value: 78.63201279320496
- type: euclidean_spearman
value: 79.40262660785731
- type: manhattan_pearson
value: 78.98138363146906
- type: manhattan_spearman
value: 79.79968413014194
- task:
type: Reranking
dataset:
name: MTEB T2Reranking
type: C-MTEB/T2Reranking
config: default
split: dev
revision: 76631901a18387f85eaa53e5450019b87ad58ef9
metrics:
- type: map
value: 67.43289278789972
- type: mrr
value: 77.53012460908535
- task:
type: Retrieval
dataset:
name: MTEB T2Retrieval
type: C-MTEB/T2Retrieval
config: default
split: dev
revision: 8731a845f1bf500a4f111cf1070785c793d10e64
metrics:
- type: map_at_1
value: 27.733999999999998
- type: map_at_10
value: 78.24799999999999
- type: map_at_100
value: 81.765
- type: map_at_1000
value: 81.824
- type: map_at_3
value: 54.92
- type: map_at_5
value: 67.61399999999999
- type: mrr_at_1
value: 90.527
- type: mrr_at_10
value: 92.843
- type: mrr_at_100
value: 92.927
- type: mrr_at_1000
value: 92.93
- type: mrr_at_3
value: 92.45100000000001
- type: mrr_at_5
value: 92.693
- type: ndcg_at_1
value: 90.527
- type: ndcg_at_10
value: 85.466
- type: ndcg_at_100
value: 88.846
- type: ndcg_at_1000
value: 89.415
- type: ndcg_at_3
value: 86.768
- type: ndcg_at_5
value: 85.46000000000001
- type: precision_at_1
value: 90.527
- type: precision_at_10
value: 42.488
- type: precision_at_100
value: 5.024
- type: precision_at_1000
value: 0.516
- type: precision_at_3
value: 75.907
- type: precision_at_5
value: 63.727000000000004
- type: recall_at_1
value: 27.733999999999998
- type: recall_at_10
value: 84.346
- type: recall_at_100
value: 95.536
- type: recall_at_1000
value: 98.42999999999999
- type: recall_at_3
value: 56.455
- type: recall_at_5
value: 70.755
- task:
type: Classification
dataset:
name: MTEB TNews
type: C-MTEB/TNews-classification
config: default
split: validation
revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
metrics:
- type: accuracy
value: 49.952000000000005
- type: f1
value: 48.264617195258054
- task:
type: Clustering
dataset:
name: MTEB ThuNewsClusteringP2P
type: C-MTEB/ThuNewsClusteringP2P
config: default
split: test
revision: 5798586b105c0434e4f0fe5e767abe619442cf93
metrics:
- type: v_measure
value: 68.23769904483508
- task:
type: Clustering
dataset:
name: MTEB ThuNewsClusteringS2S
type: C-MTEB/ThuNewsClusteringS2S
config: default
split: test
revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
metrics:
- type: v_measure
value: 62.50294403136556
- task:
type: Retrieval
dataset:
name: MTEB VideoRetrieval
type: C-MTEB/VideoRetrieval
config: default
split: dev
revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
metrics:
- type: map_at_1
value: 54
- type: map_at_10
value: 63.668
- type: map_at_100
value: 64.217
- type: map_at_1000
value: 64.23100000000001
- type: map_at_3
value: 61.7
- type: map_at_5
value: 62.870000000000005
- type: mrr_at_1
value: 54
- type: mrr_at_10
value: 63.668
- type: mrr_at_100
value: 64.217
- type: mrr_at_1000
value: 64.23100000000001
- type: mrr_at_3
value: 61.7
- type: mrr_at_5
value: 62.870000000000005
- type: ndcg_at_1
value: 54
- type: ndcg_at_10
value: 68.11399999999999
- type: ndcg_at_100
value: 70.723
- type: ndcg_at_1000
value: 71.123
- type: ndcg_at_3
value: 64.074
- type: ndcg_at_5
value: 66.178
- type: precision_at_1
value: 54
- type: precision_at_10
value: 8.200000000000001
- type: precision_at_100
value: 0.941
- type: precision_at_1000
value: 0.097
- type: precision_at_3
value: 23.633000000000003
- type: precision_at_5
value: 15.2
- type: recall_at_1
value: 54
- type: recall_at_10
value: 82
- type: recall_at_100
value: 94.1
- type: recall_at_1000
value: 97.3
- type: recall_at_3
value: 70.89999999999999
- type: recall_at_5
value: 76
- task:
type: Classification
dataset:
name: MTEB Waimai
type: C-MTEB/waimai-classification
config: default
split: test
revision: 339287def212450dcaa9df8c22bf93e9980c7023
metrics:
- type: accuracy
value: 86.63000000000001
- type: ap
value: 69.99457882599567
- type: f1
value: 85.07735617998541
- task:
type: Clustering
dataset:
name: MTEB 8TagsClustering
type: PL-MTEB/8tags-clustering
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 44.594104491193555
- task:
type: Classification
dataset:
name: MTEB AllegroReviews
type: PL-MTEB/allegro-reviews
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 63.97614314115309
- type: f1
value: 52.15634261679283
- task:
type: Retrieval
dataset:
name: MTEB ArguAna-PL
type: clarin-knext/arguana-pl
config: default
split: test
revision: 63fc86750af76253e8c760fc9e534bbf24d260a2
metrics:
- type: map_at_1
value: 32.646
- type: map_at_10
value: 47.963
- type: map_at_100
value: 48.789
- type: map_at_1000
value: 48.797000000000004
- type: map_at_3
value: 43.196
- type: map_at_5
value: 46.016
- type: mrr_at_1
value: 33.073
- type: mrr_at_10
value: 48.126000000000005
- type: mrr_at_100
value: 48.946
- type: mrr_at_1000
value: 48.953
- type: mrr_at_3
value: 43.374
- type: mrr_at_5
value: 46.147
- type: ndcg_at_1
value: 32.646
- type: ndcg_at_10
value: 56.481
- type: ndcg_at_100
value: 59.922
- type: ndcg_at_1000
value: 60.07
- type: ndcg_at_3
value: 46.675
- type: ndcg_at_5
value: 51.76500000000001
- type: precision_at_1
value: 32.646
- type: precision_at_10
value: 8.371
- type: precision_at_100
value: 0.9860000000000001
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 18.919
- type: precision_at_5
value: 13.825999999999999
- type: recall_at_1
value: 32.646
- type: recall_at_10
value: 83.71300000000001
- type: recall_at_100
value: 98.578
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 56.757000000000005
- type: recall_at_5
value: 69.132
- task:
type: Classification
dataset:
name: MTEB CBD
type: PL-MTEB/cbd
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 68.56
- type: ap
value: 23.310493680488513
- type: f1
value: 58.85369533105693
- task:
type: PairClassification
dataset:
name: MTEB CDSC-E
type: PL-MTEB/cdsce-pairclassification
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy
value: 88.5
- type: cos_sim_ap
value: 72.42140924378361
- type: cos_sim_f1
value: 66.0919540229885
- type: cos_sim_precision
value: 72.78481012658227
- type: cos_sim_recall
value: 60.526315789473685
- type: dot_accuracy
value: 88.5
- type: dot_ap
value: 72.42140924378361
- type: dot_f1
value: 66.0919540229885
- type: dot_precision
value: 72.78481012658227
- type: dot_recall
value: 60.526315789473685
- type: euclidean_accuracy
value: 88.5
- type: euclidean_ap
value: 72.42140924378361
- type: euclidean_f1
value: 66.0919540229885
- type: euclidean_precision
value: 72.78481012658227
- type: euclidean_recall
value: 60.526315789473685
- type: manhattan_accuracy
value: 88.5
- type: manhattan_ap
value: 72.49745515311696
- type: manhattan_f1
value: 66.0968660968661
- type: manhattan_precision
value: 72.04968944099379
- type: manhattan_recall
value: 61.05263157894737
- type: max_accuracy
value: 88.5
- type: max_ap
value: 72.49745515311696
- type: max_f1
value: 66.0968660968661
- task:
type: STS
dataset:
name: MTEB CDSC-R
type: PL-MTEB/cdscr-sts
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 90.32269765590145
- type: cos_sim_spearman
value: 89.73666311491672
- type: euclidean_pearson
value: 88.2933868516544
- type: euclidean_spearman
value: 89.73666311491672
- type: manhattan_pearson
value: 88.33474590219448
- type: manhattan_spearman
value: 89.8548364866583
- task:
type: Retrieval
dataset:
name: MTEB DBPedia-PL
type: clarin-knext/dbpedia-pl
config: default
split: test
revision: 76afe41d9af165cc40999fcaa92312b8b012064a
metrics:
- type: map_at_1
value: 7.632999999999999
- type: map_at_10
value: 16.426
- type: map_at_100
value: 22.651
- type: map_at_1000
value: 24.372
- type: map_at_3
value: 11.706
- type: map_at_5
value: 13.529
- type: mrr_at_1
value: 60.75000000000001
- type: mrr_at_10
value: 68.613
- type: mrr_at_100
value: 69.001
- type: mrr_at_1000
value: 69.021
- type: mrr_at_3
value: 67
- type: mrr_at_5
value: 67.925
- type: ndcg_at_1
value: 49.875
- type: ndcg_at_10
value: 36.978
- type: ndcg_at_100
value: 40.031
- type: ndcg_at_1000
value: 47.566
- type: ndcg_at_3
value: 41.148
- type: ndcg_at_5
value: 38.702
- type: precision_at_1
value: 60.75000000000001
- type: precision_at_10
value: 29.7
- type: precision_at_100
value: 9.278
- type: precision_at_1000
value: 2.099
- type: precision_at_3
value: 44
- type: precision_at_5
value: 37.6
- type: recall_at_1
value: 7.632999999999999
- type: recall_at_10
value: 22.040000000000003
- type: recall_at_100
value: 44.024
- type: recall_at_1000
value: 67.848
- type: recall_at_3
value: 13.093
- type: recall_at_5
value: 15.973
- task:
type: Retrieval
dataset:
name: MTEB FiQA-PL
type: clarin-knext/fiqa-pl
config: default
split: test
revision: 2e535829717f8bf9dc829b7f911cc5bbd4e6608e
metrics:
- type: map_at_1
value: 15.473
- type: map_at_10
value: 24.579
- type: map_at_100
value: 26.387
- type: map_at_1000
value: 26.57
- type: map_at_3
value: 21.278
- type: map_at_5
value: 23.179
- type: mrr_at_1
value: 30.709999999999997
- type: mrr_at_10
value: 38.994
- type: mrr_at_100
value: 39.993
- type: mrr_at_1000
value: 40.044999999999995
- type: mrr_at_3
value: 36.342999999999996
- type: mrr_at_5
value: 37.846999999999994
- type: ndcg_at_1
value: 30.709999999999997
- type: ndcg_at_10
value: 31.608999999999998
- type: ndcg_at_100
value: 38.807
- type: ndcg_at_1000
value: 42.208
- type: ndcg_at_3
value: 28.086
- type: ndcg_at_5
value: 29.323
- type: precision_at_1
value: 30.709999999999997
- type: precision_at_10
value: 8.688
- type: precision_at_100
value: 1.608
- type: precision_at_1000
value: 0.22100000000000003
- type: precision_at_3
value: 18.724
- type: precision_at_5
value: 13.950999999999999
- type: recall_at_1
value: 15.473
- type: recall_at_10
value: 38.361000000000004
- type: recall_at_100
value: 65.2
- type: recall_at_1000
value: 85.789
- type: recall_at_3
value: 25.401
- type: recall_at_5
value: 30.875999999999998
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA-PL
type: clarin-knext/hotpotqa-pl
config: default
split: test
revision: a0bd479ac97b4ccb5bd6ce320c415d0bb4beb907
metrics:
- type: map_at_1
value: 38.096000000000004
- type: map_at_10
value: 51.44499999999999
- type: map_at_100
value: 52.325
- type: map_at_1000
value: 52.397000000000006
- type: map_at_3
value: 48.626999999999995
- type: map_at_5
value: 50.342
- type: mrr_at_1
value: 76.19200000000001
- type: mrr_at_10
value: 81.191
- type: mrr_at_100
value: 81.431
- type: mrr_at_1000
value: 81.443
- type: mrr_at_3
value: 80.30199999999999
- type: mrr_at_5
value: 80.85900000000001
- type: ndcg_at_1
value: 76.19200000000001
- type: ndcg_at_10
value: 60.9
- type: ndcg_at_100
value: 64.14699999999999
- type: ndcg_at_1000
value: 65.647
- type: ndcg_at_3
value: 56.818000000000005
- type: ndcg_at_5
value: 59.019999999999996
- type: precision_at_1
value: 76.19200000000001
- type: precision_at_10
value: 12.203
- type: precision_at_100
value: 1.478
- type: precision_at_1000
value: 0.168
- type: precision_at_3
value: 34.616
- type: precision_at_5
value: 22.515
- type: recall_at_1
value: 38.096000000000004
- type: recall_at_10
value: 61.013
- type: recall_at_100
value: 73.90299999999999
- type: recall_at_1000
value: 83.91
- type: recall_at_3
value: 51.92400000000001
- type: recall_at_5
value: 56.286
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO-PL
type: clarin-knext/msmarco-pl
config: default
split: test
revision: 8634c07806d5cce3a6138e260e59b81760a0a640
metrics:
- type: map_at_1
value: 1.548
- type: map_at_10
value: 11.049000000000001
- type: map_at_100
value: 28.874
- type: map_at_1000
value: 34.931
- type: map_at_3
value: 4.162
- type: map_at_5
value: 6.396
- type: mrr_at_1
value: 90.69800000000001
- type: mrr_at_10
value: 92.093
- type: mrr_at_100
value: 92.345
- type: mrr_at_1000
value: 92.345
- type: mrr_at_3
value: 91.86
- type: mrr_at_5
value: 91.86
- type: ndcg_at_1
value: 74.031
- type: ndcg_at_10
value: 63.978
- type: ndcg_at_100
value: 53.101
- type: ndcg_at_1000
value: 60.675999999999995
- type: ndcg_at_3
value: 71.421
- type: ndcg_at_5
value: 68.098
- type: precision_at_1
value: 90.69800000000001
- type: precision_at_10
value: 71.86
- type: precision_at_100
value: 31.395
- type: precision_at_1000
value: 5.981
- type: precision_at_3
value: 84.49600000000001
- type: precision_at_5
value: 79.07
- type: recall_at_1
value: 1.548
- type: recall_at_10
value: 12.149000000000001
- type: recall_at_100
value: 40.794999999999995
- type: recall_at_1000
value: 67.974
- type: recall_at_3
value: 4.244
- type: recall_at_5
value: 6.608
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (pl)
type: mteb/amazon_massive_intent
config: pl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 73.55413584398119
- type: f1
value: 69.65610882318181
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (pl)
type: mteb/amazon_massive_scenario
config: pl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 76.37188971082716
- type: f1
value: 75.64847309941361
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus-PL
type: clarin-knext/nfcorpus-pl
config: default
split: test
revision: 9a6f9567fda928260afed2de480d79c98bf0bec0
metrics:
- type: map_at_1
value: 4.919
- type: map_at_10
value: 10.834000000000001
- type: map_at_100
value: 13.38
- type: map_at_1000
value: 14.581
- type: map_at_3
value: 8.198
- type: map_at_5
value: 9.428
- type: mrr_at_1
value: 41.176
- type: mrr_at_10
value: 50.083
- type: mrr_at_100
value: 50.559
- type: mrr_at_1000
value: 50.604000000000006
- type: mrr_at_3
value: 47.936
- type: mrr_at_5
value: 49.407000000000004
- type: ndcg_at_1
value: 39.628
- type: ndcg_at_10
value: 30.098000000000003
- type: ndcg_at_100
value: 27.061
- type: ndcg_at_1000
value: 35.94
- type: ndcg_at_3
value: 35.135
- type: ndcg_at_5
value: 33.335
- type: precision_at_1
value: 41.176
- type: precision_at_10
value: 22.259999999999998
- type: precision_at_100
value: 6.712
- type: precision_at_1000
value: 1.9060000000000001
- type: precision_at_3
value: 33.23
- type: precision_at_5
value: 29.04
- type: recall_at_1
value: 4.919
- type: recall_at_10
value: 14.196
- type: recall_at_100
value: 26.948
- type: recall_at_1000
value: 59.211000000000006
- type: recall_at_3
value: 9.44
- type: recall_at_5
value: 11.569
- task:
type: Retrieval
dataset:
name: MTEB NQ-PL
type: clarin-knext/nq-pl
config: default
split: test
revision: f171245712cf85dd4700b06bef18001578d0ca8d
metrics:
- type: map_at_1
value: 25.35
- type: map_at_10
value: 37.884
- type: map_at_100
value: 38.955
- type: map_at_1000
value: 39.007999999999996
- type: map_at_3
value: 34.239999999999995
- type: map_at_5
value: 36.398
- type: mrr_at_1
value: 28.737000000000002
- type: mrr_at_10
value: 39.973
- type: mrr_at_100
value: 40.844
- type: mrr_at_1000
value: 40.885
- type: mrr_at_3
value: 36.901
- type: mrr_at_5
value: 38.721
- type: ndcg_at_1
value: 28.708
- type: ndcg_at_10
value: 44.204
- type: ndcg_at_100
value: 48.978
- type: ndcg_at_1000
value: 50.33
- type: ndcg_at_3
value: 37.36
- type: ndcg_at_5
value: 40.912
- type: precision_at_1
value: 28.708
- type: precision_at_10
value: 7.367
- type: precision_at_100
value: 1.0030000000000001
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 17.034
- type: precision_at_5
value: 12.293999999999999
- type: recall_at_1
value: 25.35
- type: recall_at_10
value: 61.411
- type: recall_at_100
value: 82.599
- type: recall_at_1000
value: 92.903
- type: recall_at_3
value: 43.728
- type: recall_at_5
value: 51.854
- task:
type: Classification
dataset:
name: MTEB PAC
type: laugustyniak/abusive-clauses-pl
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 69.04141326382856
- type: ap
value: 77.49422763833996
- type: f1
value: 66.73472657783407
- task:
type: PairClassification
dataset:
name: MTEB PPC
type: PL-MTEB/ppc-pairclassification
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy
value: 81
- type: cos_sim_ap
value: 91.47194213011349
- type: cos_sim_f1
value: 84.73767885532592
- type: cos_sim_precision
value: 81.49847094801224
- type: cos_sim_recall
value: 88.24503311258279
- type: dot_accuracy
value: 81
- type: dot_ap
value: 91.47194213011349
- type: dot_f1
value: 84.73767885532592
- type: dot_precision
value: 81.49847094801224
- type: dot_recall
value: 88.24503311258279
- type: euclidean_accuracy
value: 81
- type: euclidean_ap
value: 91.47194213011349
- type: euclidean_f1
value: 84.73767885532592
- type: euclidean_precision
value: 81.49847094801224
- type: euclidean_recall
value: 88.24503311258279
- type: manhattan_accuracy
value: 81
- type: manhattan_ap
value: 91.46464475050571
- type: manhattan_f1
value: 84.48687350835321
- type: manhattan_precision
value: 81.31699846860643
- type: manhattan_recall
value: 87.91390728476821
- type: max_accuracy
value: 81
- type: max_ap
value: 91.47194213011349
- type: max_f1
value: 84.73767885532592
- task:
type: PairClassification
dataset:
name: MTEB PSC
type: PL-MTEB/psc-pairclassification
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy
value: 97.6808905380334
- type: cos_sim_ap
value: 99.27948611836348
- type: cos_sim_f1
value: 96.15975422427034
- type: cos_sim_precision
value: 96.90402476780186
- type: cos_sim_recall
value: 95.42682926829268
- type: dot_accuracy
value: 97.6808905380334
- type: dot_ap
value: 99.2794861183635
- type: dot_f1
value: 96.15975422427034
- type: dot_precision
value: 96.90402476780186
- type: dot_recall
value: 95.42682926829268
- type: euclidean_accuracy
value: 97.6808905380334
- type: euclidean_ap
value: 99.2794861183635
- type: euclidean_f1
value: 96.15975422427034
- type: euclidean_precision
value: 96.90402476780186
- type: euclidean_recall
value: 95.42682926829268
- type: manhattan_accuracy
value: 97.6808905380334
- type: manhattan_ap
value: 99.28715055268721
- type: manhattan_f1
value: 96.14791987673343
- type: manhattan_precision
value: 97.19626168224299
- type: manhattan_recall
value: 95.1219512195122
- type: max_accuracy
value: 97.6808905380334
- type: max_ap
value: 99.28715055268721
- type: max_f1
value: 96.15975422427034
- task:
type: Classification
dataset:
name: MTEB PolEmo2.0-IN
type: PL-MTEB/polemo2_in
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 86.16343490304708
- type: f1
value: 83.3442579486744
- task:
type: Classification
dataset:
name: MTEB PolEmo2.0-OUT
type: PL-MTEB/polemo2_out
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 68.40080971659918
- type: f1
value: 53.13720751142237
- task:
type: Retrieval
dataset:
name: MTEB Quora-PL
type: clarin-knext/quora-pl
config: default
split: test
revision: 0be27e93455051e531182b85e85e425aba12e9d4
metrics:
- type: map_at_1
value: 63.322
- type: map_at_10
value: 76.847
- type: map_at_100
value: 77.616
- type: map_at_1000
value: 77.644
- type: map_at_3
value: 73.624
- type: map_at_5
value: 75.603
- type: mrr_at_1
value: 72.88
- type: mrr_at_10
value: 80.376
- type: mrr_at_100
value: 80.604
- type: mrr_at_1000
value: 80.61
- type: mrr_at_3
value: 78.92
- type: mrr_at_5
value: 79.869
- type: ndcg_at_1
value: 72.89999999999999
- type: ndcg_at_10
value: 81.43
- type: ndcg_at_100
value: 83.394
- type: ndcg_at_1000
value: 83.685
- type: ndcg_at_3
value: 77.62599999999999
- type: ndcg_at_5
value: 79.656
- type: precision_at_1
value: 72.89999999999999
- type: precision_at_10
value: 12.548
- type: precision_at_100
value: 1.4869999999999999
- type: precision_at_1000
value: 0.155
- type: precision_at_3
value: 34.027
- type: precision_at_5
value: 22.654
- type: recall_at_1
value: 63.322
- type: recall_at_10
value: 90.664
- type: recall_at_100
value: 97.974
- type: recall_at_1000
value: 99.636
- type: recall_at_3
value: 80.067
- type: recall_at_5
value: 85.526
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS-PL
type: clarin-knext/scidocs-pl
config: default
split: test
revision: 45452b03f05560207ef19149545f168e596c9337
metrics:
- type: map_at_1
value: 3.95
- type: map_at_10
value: 9.658999999999999
- type: map_at_100
value: 11.384
- type: map_at_1000
value: 11.677
- type: map_at_3
value: 7.055
- type: map_at_5
value: 8.244
- type: mrr_at_1
value: 19.5
- type: mrr_at_10
value: 28.777
- type: mrr_at_100
value: 29.936
- type: mrr_at_1000
value: 30.009999999999998
- type: mrr_at_3
value: 25.55
- type: mrr_at_5
value: 27.284999999999997
- type: ndcg_at_1
value: 19.5
- type: ndcg_at_10
value: 16.589000000000002
- type: ndcg_at_100
value: 23.879
- type: ndcg_at_1000
value: 29.279
- type: ndcg_at_3
value: 15.719
- type: ndcg_at_5
value: 13.572000000000001
- type: precision_at_1
value: 19.5
- type: precision_at_10
value: 8.62
- type: precision_at_100
value: 1.924
- type: precision_at_1000
value: 0.322
- type: precision_at_3
value: 14.6
- type: precision_at_5
value: 11.78
- type: recall_at_1
value: 3.95
- type: recall_at_10
value: 17.477999999999998
- type: recall_at_100
value: 38.99
- type: recall_at_1000
value: 65.417
- type: recall_at_3
value: 8.883000000000001
- type: recall_at_5
value: 11.933
- task:
type: PairClassification
dataset:
name: MTEB SICK-E-PL
type: PL-MTEB/sicke-pl-pairclassification
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy
value: 83.48960456583775
- type: cos_sim_ap
value: 76.31522115825375
- type: cos_sim_f1
value: 70.35573122529645
- type: cos_sim_precision
value: 70.9934735315446
- type: cos_sim_recall
value: 69.72934472934473
- type: dot_accuracy
value: 83.48960456583775
- type: dot_ap
value: 76.31522115825373
- type: dot_f1
value: 70.35573122529645
- type: dot_precision
value: 70.9934735315446
- type: dot_recall
value: 69.72934472934473
- type: euclidean_accuracy
value: 83.48960456583775
- type: euclidean_ap
value: 76.31522115825373
- type: euclidean_f1
value: 70.35573122529645
- type: euclidean_precision
value: 70.9934735315446
- type: euclidean_recall
value: 69.72934472934473
- type: manhattan_accuracy
value: 83.46922136159804
- type: manhattan_ap
value: 76.18474601388084
- type: manhattan_f1
value: 70.34779490856937
- type: manhattan_precision
value: 70.83032490974729
- type: manhattan_recall
value: 69.87179487179486
- type: max_accuracy
value: 83.48960456583775
- type: max_ap
value: 76.31522115825375
- type: max_f1
value: 70.35573122529645
- task:
type: STS
dataset:
name: MTEB SICK-R-PL
type: PL-MTEB/sickr-pl-sts
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 77.95374883876302
- type: cos_sim_spearman
value: 73.77630219171942
- type: euclidean_pearson
value: 75.81927069594934
- type: euclidean_spearman
value: 73.7763211303831
- type: manhattan_pearson
value: 76.03126859057528
- type: manhattan_spearman
value: 73.96528138013369
- task:
type: STS
dataset:
name: MTEB STS22 (pl)
type: mteb/sts22-crosslingual-sts
config: pl
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 37.388282764841826
- type: cos_sim_spearman
value: 40.83477184710897
- type: euclidean_pearson
value: 26.754737044177805
- type: euclidean_spearman
value: 40.83477184710897
- type: manhattan_pearson
value: 26.760453110872458
- type: manhattan_spearman
value: 41.034477441383856
- task:
type: Retrieval
dataset:
name: MTEB SciFact-PL
type: clarin-knext/scifact-pl
config: default
split: test
revision: 47932a35f045ef8ed01ba82bf9ff67f6e109207e
metrics:
- type: map_at_1
value: 49.15
- type: map_at_10
value: 61.690999999999995
- type: map_at_100
value: 62.348000000000006
- type: map_at_1000
value: 62.38
- type: map_at_3
value: 58.824
- type: map_at_5
value: 60.662000000000006
- type: mrr_at_1
value: 51.333
- type: mrr_at_10
value: 62.731
- type: mrr_at_100
value: 63.245
- type: mrr_at_1000
value: 63.275000000000006
- type: mrr_at_3
value: 60.667
- type: mrr_at_5
value: 61.93300000000001
- type: ndcg_at_1
value: 51.333
- type: ndcg_at_10
value: 67.168
- type: ndcg_at_100
value: 69.833
- type: ndcg_at_1000
value: 70.56700000000001
- type: ndcg_at_3
value: 62.40599999999999
- type: ndcg_at_5
value: 65.029
- type: precision_at_1
value: 51.333
- type: precision_at_10
value: 9.333
- type: precision_at_100
value: 1.0699999999999998
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 25.333
- type: precision_at_5
value: 17.067
- type: recall_at_1
value: 49.15
- type: recall_at_10
value: 82.533
- type: recall_at_100
value: 94.167
- type: recall_at_1000
value: 99.667
- type: recall_at_3
value: 69.917
- type: recall_at_5
value: 76.356
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID-PL
type: clarin-knext/trec-covid-pl
config: default
split: test
revision: 81bcb408f33366c2a20ac54adafad1ae7e877fdd
metrics:
- type: map_at_1
value: 0.261
- type: map_at_10
value: 2.1260000000000003
- type: map_at_100
value: 12.171999999999999
- type: map_at_1000
value: 26.884999999999998
- type: map_at_3
value: 0.695
- type: map_at_5
value: 1.134
- type: mrr_at_1
value: 96
- type: mrr_at_10
value: 96.952
- type: mrr_at_100
value: 96.952
- type: mrr_at_1000
value: 96.952
- type: mrr_at_3
value: 96.667
- type: mrr_at_5
value: 96.667
- type: ndcg_at_1
value: 92
- type: ndcg_at_10
value: 81.193
- type: ndcg_at_100
value: 61.129
- type: ndcg_at_1000
value: 51.157
- type: ndcg_at_3
value: 85.693
- type: ndcg_at_5
value: 84.129
- type: precision_at_1
value: 96
- type: precision_at_10
value: 85.39999999999999
- type: precision_at_100
value: 62.03999999999999
- type: precision_at_1000
value: 22.224
- type: precision_at_3
value: 88
- type: precision_at_5
value: 88
- type: recall_at_1
value: 0.261
- type: recall_at_10
value: 2.262
- type: recall_at_100
value: 14.981
- type: recall_at_1000
value: 46.837
- type: recall_at_3
value: 0.703
- type: recall_at_5
value: 1.172
- task:
type: Clustering
dataset:
name: MTEB AlloProfClusteringP2P
type: lyon-nlp/alloprof
config: default
split: test
revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
metrics:
- type: v_measure
value: 70.55290063940157
- type: v_measure
value: 55.41500719337263
- task:
type: Reranking
dataset:
name: MTEB AlloprofReranking
type: lyon-nlp/mteb-fr-reranking-alloprof-s2p
config: default
split: test
revision: 666fdacebe0291776e86f29345663dfaf80a0db9
metrics:
- type: map
value: 73.48697375332002
- type: mrr
value: 75.01836585523822
- task:
type: Retrieval
dataset:
name: MTEB AlloprofRetrieval
type: lyon-nlp/alloprof
config: default
split: test
revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
metrics:
- type: map_at_1
value: 38.454
- type: map_at_10
value: 51.605000000000004
- type: map_at_100
value: 52.653000000000006
- type: map_at_1000
value: 52.697
- type: map_at_3
value: 48.304
- type: map_at_5
value: 50.073
- type: mrr_at_1
value: 43.307
- type: mrr_at_10
value: 54.400000000000006
- type: mrr_at_100
value: 55.147999999999996
- type: mrr_at_1000
value: 55.174
- type: mrr_at_3
value: 51.77
- type: mrr_at_5
value: 53.166999999999994
- type: ndcg_at_1
value: 43.307
- type: ndcg_at_10
value: 57.891000000000005
- type: ndcg_at_100
value: 62.161
- type: ndcg_at_1000
value: 63.083
- type: ndcg_at_3
value: 51.851
- type: ndcg_at_5
value: 54.605000000000004
- type: precision_at_1
value: 43.307
- type: precision_at_10
value: 9.033
- type: precision_at_100
value: 1.172
- type: precision_at_1000
value: 0.127
- type: precision_at_3
value: 22.798
- type: precision_at_5
value: 15.492
- type: recall_at_1
value: 38.454
- type: recall_at_10
value: 74.166
- type: recall_at_100
value: 92.43599999999999
- type: recall_at_1000
value: 99.071
- type: recall_at_3
value: 58.087
- type: recall_at_5
value: 64.568
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (fr)
type: mteb/amazon_reviews_multi
config: fr
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 53.474
- type: f1
value: 50.38275392350236
- task:
type: Retrieval
dataset:
name: MTEB BSARDRetrieval
type: maastrichtlawtech/bsard
config: default
split: test
revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59
metrics:
- type: map_at_1
value: 2.252
- type: map_at_10
value: 4.661
- type: map_at_100
value: 5.271
- type: map_at_1000
value: 5.3629999999999995
- type: map_at_3
value: 3.604
- type: map_at_5
value: 4.3020000000000005
- type: mrr_at_1
value: 2.252
- type: mrr_at_10
value: 4.661
- type: mrr_at_100
value: 5.271
- type: mrr_at_1000
value: 5.3629999999999995
- type: mrr_at_3
value: 3.604
- type: mrr_at_5
value: 4.3020000000000005
- type: ndcg_at_1
value: 2.252
- type: ndcg_at_10
value: 6.3020000000000005
- type: ndcg_at_100
value: 10.342
- type: ndcg_at_1000
value: 13.475999999999999
- type: ndcg_at_3
value: 4.0649999999999995
- type: ndcg_at_5
value: 5.344
- type: precision_at_1
value: 2.252
- type: precision_at_10
value: 1.171
- type: precision_at_100
value: 0.333
- type: precision_at_1000
value: 0.059000000000000004
- type: precision_at_3
value: 1.802
- type: precision_at_5
value: 1.712
- type: recall_at_1
value: 2.252
- type: recall_at_10
value: 11.712
- type: recall_at_100
value: 33.333
- type: recall_at_1000
value: 59.458999999999996
- type: recall_at_3
value: 5.405
- type: recall_at_5
value: 8.559
- task:
type: Clustering
dataset:
name: MTEB HALClusteringS2S
type: lyon-nlp/clustering-hal-s2s
config: default
split: test
revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915
metrics:
- type: v_measure
value: 28.301882091023288
- task:
type: Clustering
dataset:
name: MTEB MLSUMClusteringP2P
type: mlsum
config: default
split: test
revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
metrics:
- type: v_measure
value: 45.26992995191701
- type: v_measure
value: 42.773174876871145
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (fr)
type: mteb/mtop_domain
config: fr
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 93.47635452552458
- type: f1
value: 93.19922617577213
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (fr)
type: mteb/mtop_intent
config: fr
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 80.2317569683683
- type: f1
value: 56.18060418621901
- task:
type: Classification
dataset:
name: MTEB MasakhaNEWSClassification (fra)
type: masakhane/masakhanews
config: fra
split: test
revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
metrics:
- type: accuracy
value: 85.18957345971565
- type: f1
value: 80.829981537394
- task:
type: Clustering
dataset:
name: MTEB MasakhaNEWSClusteringP2P (fra)
type: masakhane/masakhanews
config: fra
split: test
revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
metrics:
- type: v_measure
value: 71.04138999801822
- type: v_measure
value: 71.7056263158008
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (fr)
type: mteb/amazon_massive_intent
config: fr
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 76.65097511768661
- type: f1
value: 73.82441070598712
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (fr)
type: mteb/amazon_massive_scenario
config: fr
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 79.09885675857431
- type: f1
value: 78.28407777434224
- task:
type: Retrieval
dataset:
name: MTEB MintakaRetrieval (fr)
type: jinaai/mintakaqa
config: fr
split: test
revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e
metrics:
- type: map_at_1
value: 25.307000000000002
- type: map_at_10
value: 36.723
- type: map_at_100
value: 37.713
- type: map_at_1000
value: 37.769000000000005
- type: map_at_3
value: 33.77
- type: map_at_5
value: 35.463
- type: mrr_at_1
value: 25.307000000000002
- type: mrr_at_10
value: 36.723
- type: mrr_at_100
value: 37.713
- type: mrr_at_1000
value: 37.769000000000005
- type: mrr_at_3
value: 33.77
- type: mrr_at_5
value: 35.463
- type: ndcg_at_1
value: 25.307000000000002
- type: ndcg_at_10
value: 42.559999999999995
- type: ndcg_at_100
value: 47.457
- type: ndcg_at_1000
value: 49.162
- type: ndcg_at_3
value: 36.461
- type: ndcg_at_5
value: 39.504
- type: precision_at_1
value: 25.307000000000002
- type: precision_at_10
value: 6.106
- type: precision_at_100
value: 0.8420000000000001
- type: precision_at_1000
value: 0.098
- type: precision_at_3
value: 14.741999999999999
- type: precision_at_5
value: 10.319
- type: recall_at_1
value: 25.307000000000002
- type: recall_at_10
value: 61.056999999999995
- type: recall_at_100
value: 84.152
- type: recall_at_1000
value: 98.03399999999999
- type: recall_at_3
value: 44.226
- type: recall_at_5
value: 51.597
- task:
type: PairClassification
dataset:
name: MTEB OpusparcusPC (fr)
type: GEM/opusparcus
config: fr
split: test
revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a
metrics:
- type: cos_sim_accuracy
value: 99.90069513406156
- type: cos_sim_ap
value: 100
- type: cos_sim_f1
value: 99.95032290114257
- type: cos_sim_precision
value: 100
- type: cos_sim_recall
value: 99.90069513406156
- type: dot_accuracy
value: 99.90069513406156
- type: dot_ap
value: 100
- type: dot_f1
value: 99.95032290114257
- type: dot_precision
value: 100
- type: dot_recall
value: 99.90069513406156
- type: euclidean_accuracy
value: 99.90069513406156
- type: euclidean_ap
value: 100
- type: euclidean_f1
value: 99.95032290114257
- type: euclidean_precision
value: 100
- type: euclidean_recall
value: 99.90069513406156
- type: manhattan_accuracy
value: 99.90069513406156
- type: manhattan_ap
value: 100
- type: manhattan_f1
value: 99.95032290114257
- type: manhattan_precision
value: 100
- type: manhattan_recall
value: 99.90069513406156
- type: max_accuracy
value: 99.90069513406156
- type: max_ap
value: 100
- type: max_f1
value: 99.95032290114257
- task:
type: PairClassification
dataset:
name: MTEB PawsX (fr)
type: paws-x
config: fr
split: test
revision: 8a04d940a42cd40658986fdd8e3da561533a3646
metrics:
- type: cos_sim_accuracy
value: 70.8
- type: cos_sim_ap
value: 73.7671529695957
- type: cos_sim_f1
value: 68.80964339527875
- type: cos_sim_precision
value: 62.95955882352941
- type: cos_sim_recall
value: 75.85825027685493
- type: dot_accuracy
value: 70.8
- type: dot_ap
value: 73.78345265366947
- type: dot_f1
value: 68.80964339527875
- type: dot_precision
value: 62.95955882352941
- type: dot_recall
value: 75.85825027685493
- type: euclidean_accuracy
value: 70.8
- type: euclidean_ap
value: 73.7671529695957
- type: euclidean_f1
value: 68.80964339527875
- type: euclidean_precision
value: 62.95955882352941
- type: euclidean_recall
value: 75.85825027685493
- type: manhattan_accuracy
value: 70.75
- type: manhattan_ap
value: 73.78996383615953
- type: manhattan_f1
value: 68.79432624113475
- type: manhattan_precision
value: 63.39869281045751
- type: manhattan_recall
value: 75.1937984496124
- type: max_accuracy
value: 70.8
- type: max_ap
value: 73.78996383615953
- type: max_f1
value: 68.80964339527875
- task:
type: STS
dataset:
name: MTEB SICKFr
type: Lajavaness/SICK-fr
config: default
split: test
revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a
metrics:
- type: cos_sim_pearson
value: 84.03253762760392
- type: cos_sim_spearman
value: 79.68280105762004
- type: euclidean_pearson
value: 80.98265050044444
- type: euclidean_spearman
value: 79.68233242682867
- type: manhattan_pearson
value: 80.9678911810704
- type: manhattan_spearman
value: 79.70264097683109
- task:
type: STS
dataset:
name: MTEB STS22 (fr)
type: mteb/sts22-crosslingual-sts
config: fr
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 80.56896987572884
- type: cos_sim_spearman
value: 81.84352499523287
- type: euclidean_pearson
value: 80.40831759421305
- type: euclidean_spearman
value: 81.84352499523287
- type: manhattan_pearson
value: 80.74333857561238
- type: manhattan_spearman
value: 82.41503246733892
- task:
type: STS
dataset:
name: MTEB STSBenchmarkMultilingualSTS (fr)
type: stsb_multi_mt
config: fr
split: test
revision: 93d57ef91790589e3ce9c365164337a8a78b7632
metrics:
- type: cos_sim_pearson
value: 82.71826762276979
- type: cos_sim_spearman
value: 82.25433354916042
- type: euclidean_pearson
value: 81.87115571724316
- type: euclidean_spearman
value: 82.25322342890107
- type: manhattan_pearson
value: 82.11174867527224
- type: manhattan_spearman
value: 82.55905365203084
- task:
type: Summarization
dataset:
name: MTEB SummEvalFr
type: lyon-nlp/summarization-summeval-fr-p2p
config: default
split: test
revision: b385812de6a9577b6f4d0f88c6a6e35395a94054
metrics:
- type: cos_sim_pearson
value: 30.659441623392887
- type: cos_sim_spearman
value: 30.501134097353315
- type: dot_pearson
value: 30.659444768851056
- type: dot_spearman
value: 30.501134097353315
- task:
type: Reranking
dataset:
name: MTEB SyntecReranking
type: lyon-nlp/mteb-fr-reranking-syntec-s2p
config: default
split: test
revision: b205c5084a0934ce8af14338bf03feb19499c84d
metrics:
- type: map
value: 94.03333333333333
- type: mrr
value: 94.03333333333333
- task:
type: Retrieval
dataset:
name: MTEB SyntecRetrieval
type: lyon-nlp/mteb-fr-retrieval-syntec-s2p
config: default
split: test
revision: 77f7e271bf4a92b24fce5119f3486b583ca016ff
metrics:
- type: map_at_1
value: 79
- type: map_at_10
value: 87.61
- type: map_at_100
value: 87.655
- type: map_at_1000
value: 87.655
- type: map_at_3
value: 87.167
- type: map_at_5
value: 87.36699999999999
- type: mrr_at_1
value: 79
- type: mrr_at_10
value: 87.61
- type: mrr_at_100
value: 87.655
- type: mrr_at_1000
value: 87.655
- type: mrr_at_3
value: 87.167
- type: mrr_at_5
value: 87.36699999999999
- type: ndcg_at_1
value: 79
- type: ndcg_at_10
value: 90.473
- type: ndcg_at_100
value: 90.694
- type: ndcg_at_1000
value: 90.694
- type: ndcg_at_3
value: 89.464
- type: ndcg_at_5
value: 89.851
- type: precision_at_1
value: 79
- type: precision_at_10
value: 9.9
- type: precision_at_100
value: 1
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 32
- type: precision_at_5
value: 19.400000000000002
- type: recall_at_1
value: 79
- type: recall_at_10
value: 99
- type: recall_at_100
value: 100
- type: recall_at_1000
value: 100
- type: recall_at_3
value: 96
- type: recall_at_5
value: 97
- task:
type: Retrieval
dataset:
name: MTEB XPQARetrieval (fr)
type: jinaai/xpqa
config: fr
split: test
revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
metrics:
- type: map_at_1
value: 39.395
- type: map_at_10
value: 59.123999999999995
- type: map_at_100
value: 60.704
- type: map_at_1000
value: 60.760000000000005
- type: map_at_3
value: 53.187
- type: map_at_5
value: 56.863
- type: mrr_at_1
value: 62.083
- type: mrr_at_10
value: 68.87299999999999
- type: mrr_at_100
value: 69.46900000000001
- type: mrr_at_1000
value: 69.48299999999999
- type: mrr_at_3
value: 66.8
- type: mrr_at_5
value: 67.928
- type: ndcg_at_1
value: 62.083
- type: ndcg_at_10
value: 65.583
- type: ndcg_at_100
value: 70.918
- type: ndcg_at_1000
value: 71.72800000000001
- type: ndcg_at_3
value: 60.428000000000004
- type: ndcg_at_5
value: 61.853
- type: precision_at_1
value: 62.083
- type: precision_at_10
value: 15.033
- type: precision_at_100
value: 1.9529999999999998
- type: precision_at_1000
value: 0.207
- type: precision_at_3
value: 36.315
- type: precision_at_5
value: 25.955000000000002
- type: recall_at_1
value: 39.395
- type: recall_at_10
value: 74.332
- type: recall_at_100
value: 94.729
- type: recall_at_1000
value: 99.75500000000001
- type: recall_at_3
value: 57.679
- type: recall_at_5
value: 65.036
msyukorai/gte-Qwen2-1.5B-instruct-Q4_0-GGUF
This model was converted to GGUF format from Alibaba-NLP/gte-Qwen2-1.5B-instruct
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo msyukorai/gte-Qwen2-1.5B-instruct-Q4_0-GGUF --hf-file gte-qwen2-1.5b-instruct-q4_0.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo msyukorai/gte-Qwen2-1.5B-instruct-Q4_0-GGUF --hf-file gte-qwen2-1.5b-instruct-q4_0.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo msyukorai/gte-Qwen2-1.5B-instruct-Q4_0-GGUF --hf-file gte-qwen2-1.5b-instruct-q4_0.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo msyukorai/gte-Qwen2-1.5B-instruct-Q4_0-GGUF --hf-file gte-qwen2-1.5b-instruct-q4_0.gguf -c 2048