v3_mistral_lora
This model is a fine-tuned version of peiyi9979/math-shepherd-mistral-7b-prm on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0001
- Accuracy: 1.0
- Precision: 1.0
- Recall: 1.0
- F1: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 8569382
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 0 | 0 | 0.4941 | 0.7546 | 0.6364 | 0.2526 | 0.3616 |
0.483 | 0.0169 | 20 | 0.4898 | 0.7645 | 0.7 | 0.2526 | 0.3712 |
0.5491 | 0.0339 | 40 | 0.4646 | 0.7716 | 0.7705 | 0.2423 | 0.3686 |
0.3868 | 0.0508 | 60 | 0.3927 | 0.8014 | 0.8462 | 0.3402 | 0.4853 |
0.2752 | 0.0678 | 80 | 0.2430 | 0.9149 | 0.9589 | 0.7216 | 0.8235 |
0.1319 | 0.0847 | 100 | 0.0990 | 0.9716 | 0.9531 | 0.9433 | 0.9482 |
0.0971 | 0.1017 | 120 | 0.0422 | 0.9915 | 0.9747 | 0.9948 | 0.9847 |
0.0478 | 0.1186 | 140 | 0.0120 | 0.9986 | 1.0 | 0.9948 | 0.9974 |
0.0373 | 0.1356 | 160 | 0.0099 | 0.9986 | 1.0 | 0.9948 | 0.9974 |
0.0357 | 0.1525 | 180 | 0.0073 | 0.9972 | 0.9948 | 0.9948 | 0.9948 |
0.0147 | 0.1695 | 200 | 0.0105 | 0.9986 | 1.0 | 0.9948 | 0.9974 |
0.0271 | 0.1864 | 220 | 0.0075 | 0.9986 | 1.0 | 0.9948 | 0.9974 |
0.0071 | 0.2034 | 240 | 0.0073 | 0.9986 | 1.0 | 0.9948 | 0.9974 |
0.009 | 0.2203 | 260 | 0.0021 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0288 | 0.2373 | 280 | 0.0015 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0236 | 0.2542 | 300 | 0.0011 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0053 | 0.2712 | 320 | 0.0008 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0028 | 0.2881 | 340 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 |
0.015 | 0.3051 | 360 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0446 | 0.3220 | 380 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0261 | 0.3390 | 400 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0032 | 0.3559 | 420 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0413 | 0.3729 | 440 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0189 | 0.3898 | 460 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 |
0.003 | 0.4068 | 480 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0071 | 0.4237 | 500 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0139 | 0.4407 | 520 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0161 | 0.4576 | 540 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0027 | 0.4746 | 560 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0039 | 0.4915 | 580 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0067 | 0.5085 | 600 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.012 | 0.5254 | 620 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.006 | 0.5424 | 640 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0025 | 0.5593 | 660 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0055 | 0.5763 | 680 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0116 | 0.5932 | 700 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.014 | 0.6102 | 720 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0042 | 0.6271 | 740 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0418 | 0.6441 | 760 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0024 | 0.6610 | 780 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0039 | 0.6780 | 800 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0048 | 0.6949 | 820 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0007 | 0.7119 | 840 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0014 | 0.7288 | 860 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0056 | 0.7458 | 880 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0107 | 0.7627 | 900 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0027 | 0.7797 | 920 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0105 | 0.7966 | 940 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0157 | 0.8136 | 960 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0082 | 0.8305 | 980 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0084 | 0.8475 | 1000 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0182 | 0.8644 | 1020 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0053 | 0.8814 | 1040 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0087 | 0.8983 | 1060 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0017 | 0.9153 | 1080 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0058 | 0.9322 | 1100 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0015 | 0.9492 | 1120 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0059 | 0.9661 | 1140 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0069 | 0.9831 | 1160 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0058 | 1.0 | 1180 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 33
Model tree for mtzig/v3_mistral_lora
Base model
peiyi9979/math-shepherd-mistral-7b-prm