File size: 1,694 Bytes
a7fe023
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd5e992
a7fe023
6d8040a
 
 
 
 
a7fe023
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd5e992
a7fe023
 
 
 
 
6d8040a
 
 
a7fe023
 
 
 
6d8040a
bd5e992
a7fe023
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: xlm-roberta-base-finetuned-pos
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-roberta-base-finetuned-pos

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0827
- Precision: 0.9738
- Recall: 0.9748
- F1: 0.9743
- Accuracy: 0.9769

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1627        | 1.0   | 1583 | 0.1273          | 0.9584    | 0.9619 | 0.9601 | 0.9641   |
| 0.0984        | 2.0   | 3166 | 0.0909          | 0.9704    | 0.9722 | 0.9713 | 0.9743   |
| 0.0747        | 3.0   | 4749 | 0.0827          | 0.9738    | 0.9748 | 0.9743 | 0.9769   |


### Framework versions

- Transformers 4.27.3
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2