muhammadbilal's picture
update model card README.md
6d8040a
|
raw
history blame
1.69 kB
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: xlm-roberta-base-finetuned-pos
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-pos
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0827
- Precision: 0.9738
- Recall: 0.9748
- F1: 0.9743
- Accuracy: 0.9769
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1627 | 1.0 | 1583 | 0.1273 | 0.9584 | 0.9619 | 0.9601 | 0.9641 |
| 0.0984 | 2.0 | 3166 | 0.0909 | 0.9704 | 0.9722 | 0.9713 | 0.9743 |
| 0.0747 | 3.0 | 4749 | 0.0827 | 0.9738 | 0.9748 | 0.9743 | 0.9769 |
### Framework versions
- Transformers 4.27.3
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2