muhammadbilal's picture
Update README.md
6f94ea9
|
raw
history blame
2.34 kB
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: xlm-roberta-base-finetuned-pos
    results: []

xlm-roberta-base-finetuned-pos

This model is a fine-tuned version of xlm-roberta-base on the Sajjad's dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5350
  • Precision: 0.8992
  • Recall: 0.9129
  • F1: 0.9060
  • Accuracy: 0.8979

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 457 0.3629 0.8779 0.8952 0.8865 0.8904
0.5823 2.0 914 0.3986 0.8870 0.9036 0.8952 0.8879
0.2312 3.0 1371 0.4127 0.8891 0.9044 0.8967 0.8887
0.1651 4.0 1828 0.4374 0.8885 0.9030 0.8957 0.8870
0.1265 5.0 2285 0.4622 0.8923 0.9068 0.8995 0.8912
0.1036 6.0 2742 0.4752 0.8962 0.9088 0.9025 0.8946
0.0806 7.0 3199 0.5058 0.8950 0.9093 0.9020 0.8933
0.0727 8.0 3656 0.5232 0.8996 0.9123 0.9059 0.8976
0.0603 9.0 4113 0.5360 0.8970 0.9106 0.9037 0.8952
0.0548 10.0 4570 0.5350 0.8992 0.9129 0.9060 0.8979

Framework versions

  • Transformers 4.27.1
  • Pytorch 2.0.0+cu117
  • Datasets 2.10.1
  • Tokenizers 0.13.2