muhtasham's picture
update model card README.md
f8e549b
|
raw
history blame
2.22 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - xglue
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-tiny-finetuned-xglue-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: xglue
          type: xglue
          config: ner
          split: train
          args: ner
        metrics:
          - name: Precision
            type: precision
            value: 0.630759453447728
          - name: Recall
            type: recall
            value: 0.6681252103668799
          - name: F1
            type: f1
            value: 0.6489048708728343
          - name: Accuracy
            type: accuracy
            value: 0.9274310133922189

bert-tiny-finetuned-xglue-ner

This model is a fine-tuned version of google/bert_uncased_L-2_H-128_A-2 on the xglue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2489
  • Precision: 0.6308
  • Recall: 0.6681
  • F1: 0.6489
  • Accuracy: 0.9274

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.4082 1.0 1756 0.3326 0.5600 0.5798 0.5697 0.9118
0.2974 2.0 3512 0.2635 0.6143 0.6562 0.6346 0.9248
0.2741 3.0 5268 0.2489 0.6308 0.6681 0.6489 0.9274

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1