|
--- |
|
base_model: '' |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: hubert2BertMusic200 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# hubert2BertMusic200 |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4016 |
|
- Rouge1: 29.7694 |
|
- Rouge2: 6.8881 |
|
- Rougel: 20.8382 |
|
- Rougelsum: 20.7475 |
|
- Gen Len: 54.68 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-06 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| |
|
| 1.5312 | 1.0 | 1361 | 1.4350 | 29.7078 | 7.6167 | 21.0154 | 20.9599 | 57.96 | |
|
| 1.479 | 2.0 | 2722 | 1.4311 | 29.5523 | 7.5127 | 20.8746 | 20.7455 | 55.77 | |
|
| 1.4774 | 3.0 | 4083 | 1.4296 | 29.4948 | 7.41 | 20.6514 | 20.531 | 55.12 | |
|
| 1.4663 | 4.0 | 5444 | 1.4239 | 28.8275 | 6.8898 | 20.1906 | 20.1528 | 54.0 | |
|
| 1.5195 | 5.0 | 6805 | 1.4219 | 31.4265 | 7.8481 | 21.8264 | 21.7471 | 53.33 | |
|
| 1.5115 | 6.0 | 8166 | 1.4177 | 29.8254 | 6.8757 | 21.0269 | 20.9813 | 53.45 | |
|
| 1.5424 | 7.0 | 9527 | 1.4154 | 29.9847 | 7.0621 | 20.9479 | 20.9081 | 54.73 | |
|
| 1.5635 | 8.0 | 10888 | 1.4131 | 29.8807 | 7.1097 | 20.9508 | 20.902 | 53.83 | |
|
| 1.6138 | 9.0 | 12249 | 1.4113 | 29.1418 | 6.725 | 20.4919 | 20.404 | 55.46 | |
|
| 1.676 | 10.0 | 13610 | 1.4094 | 29.4633 | 6.7466 | 20.5997 | 20.5457 | 54.8 | |
|
| 1.6447 | 11.0 | 14971 | 1.4087 | 30.1765 | 6.7892 | 20.9128 | 20.8485 | 54.75 | |
|
| 1.6683 | 12.0 | 16332 | 1.4074 | 29.7832 | 6.7904 | 20.6381 | 20.5824 | 54.86 | |
|
| 1.6927 | 13.0 | 17693 | 1.4056 | 29.5094 | 6.6848 | 20.5682 | 20.4713 | 53.62 | |
|
| 1.6567 | 14.0 | 19054 | 1.4040 | 29.674 | 6.7272 | 20.7709 | 20.7017 | 52.78 | |
|
| 1.672 | 15.0 | 20415 | 1.4032 | 29.447 | 6.6842 | 20.707 | 20.6147 | 53.81 | |
|
| 1.6468 | 16.0 | 21776 | 1.4032 | 30.1311 | 7.1838 | 21.0813 | 21.0099 | 54.62 | |
|
| 1.6661 | 17.0 | 23137 | 1.4022 | 30.1715 | 7.1566 | 21.0716 | 20.9984 | 54.95 | |
|
| 1.668 | 18.0 | 24498 | 1.4020 | 30.1766 | 7.1429 | 21.1461 | 21.0611 | 54.56 | |
|
| 1.6448 | 19.0 | 25859 | 1.4016 | 29.5354 | 6.7505 | 20.5517 | 20.4719 | 54.34 | |
|
| 1.6647 | 20.0 | 27220 | 1.4016 | 29.7694 | 6.8881 | 20.8382 | 20.7475 | 54.68 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.2 |
|
- Tokenizers 0.13.3 |
|
|