See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Hermes-2-Pro-Llama-3-8B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 1b63c7faa9e46fed_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/1b63c7faa9e46fed_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config:
max_steps: 50
weight_decay: 0.01
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: nadejdatarabukina/1579b4d9-e881-46e2-8dc9-674f94c235be
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GiB
max_steps: 48
micro_batch_size: 2
mlflow_experiment_name: /tmp/1b63c7faa9e46fed_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 70
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 1579b4d9-e881-46e2-8dc9-674f94c235be
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1579b4d9-e881-46e2-8dc9-674f94c235be
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
1579b4d9-e881-46e2-8dc9-674f94c235be
This model is a fine-tuned version of NousResearch/Hermes-2-Pro-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4877
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 48
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0007 | 1 | 14.1944 |
14.1673 | 0.0020 | 3 | 14.0619 |
13.1104 | 0.0041 | 6 | 10.5263 |
7.6466 | 0.0061 | 9 | 2.5869 |
1.7124 | 0.0082 | 12 | 0.6556 |
0.8192 | 0.0102 | 15 | 0.5818 |
1.0626 | 0.0123 | 18 | 0.9416 |
0.8372 | 0.0143 | 21 | 0.9340 |
0.7272 | 0.0164 | 24 | 0.7674 |
0.6395 | 0.0184 | 27 | 0.6367 |
0.5273 | 0.0204 | 30 | 0.6264 |
0.5847 | 0.0225 | 33 | 0.5995 |
0.4656 | 0.0245 | 36 | 0.5199 |
0.4261 | 0.0266 | 39 | 0.5036 |
0.4446 | 0.0286 | 42 | 0.4913 |
0.5363 | 0.0307 | 45 | 0.4886 |
0.385 | 0.0327 | 48 | 0.4877 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for nadejdatarabukina/1579b4d9-e881-46e2-8dc9-674f94c235be
Base model
NousResearch/Meta-Llama-3-8B
Finetuned
NousResearch/Hermes-2-Pro-Llama-3-8B