|
--- |
|
base_model: luqh/ClinicalT5-base |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: medical_jargons_simplifierT5 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# medical_jargons_simplifierT5 |
|
|
|
This model is a fine-tuned version of [luqh/ClinicalT5-base](https://huggingface.co/luqh/ClinicalT5-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4734 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 50 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:-----:|:---------------:| |
|
| 3.3369 | 0.2198 | 500 | 0.5700 | |
|
| 0.601 | 0.4396 | 1000 | 0.5279 | |
|
| 0.572 | 0.6593 | 1500 | 0.5137 | |
|
| 0.5556 | 0.8791 | 2000 | 0.5051 | |
|
| 0.5132 | 1.0989 | 2500 | 0.4991 | |
|
| 0.5406 | 1.3187 | 3000 | 0.4941 | |
|
| 0.513 | 1.5385 | 3500 | 0.4909 | |
|
| 0.5328 | 1.7582 | 4000 | 0.4880 | |
|
| 0.5304 | 1.9780 | 4500 | 0.4846 | |
|
| 0.5215 | 2.1978 | 5000 | 0.4825 | |
|
| 0.5296 | 2.4176 | 5500 | 0.4811 | |
|
| 0.5143 | 2.6374 | 6000 | 0.4799 | |
|
| 0.4768 | 2.8571 | 6500 | 0.4780 | |
|
| 0.513 | 3.0769 | 7000 | 0.4775 | |
|
| 0.4933 | 3.2967 | 7500 | 0.4761 | |
|
| 0.4891 | 3.5165 | 8000 | 0.4761 | |
|
| 0.5022 | 3.7363 | 8500 | 0.4749 | |
|
| 0.523 | 3.9560 | 9000 | 0.4743 | |
|
| 0.5233 | 4.1758 | 9500 | 0.4742 | |
|
| 0.5004 | 4.3956 | 10000 | 0.4738 | |
|
| 0.4817 | 4.6154 | 10500 | 0.4733 | |
|
| 0.4848 | 4.8352 | 11000 | 0.4734 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|