whisper-sm-th-7k / README.md
napatswift's picture
Update README.md
7ab6a9f
metadata
language:
  - th
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
  - lotus
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Small Thai 7k
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 th
          type: mozilla-foundation/common_voice_11_0
          config: th
          split: test
          args: th
        metrics:
          - name: Wer
            type: wer
            value: 14.69

Whisper Tiny Thai

This model is a fine-tuned version of openai/whisper-small on the mozilla-foundation/common_voice_11_0, lotus, google/fleurs th,None,th_th dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2262
  • Wer: 14.69

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 7000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0473 0.14 1000 0.2459 21.6283
0.0253 1.07 2000 0.1970 17.2157
0.0181 2.0 3000 0.2017 17.8993
0.0088 2.15 4000 0.2148 16.8428
0.0055 3.07 5000 0.2166 15.8484
0.0048 4.0 6000 0.2261 16.0348
0.0026 4.15 7000 0.2262 15.5998

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2