ndeclarke's picture
Upload tokenizer
13f1e2d verified
|
raw
history blame
3 kB
metadata
base_model: facebook/mms-1b-all
datasets:
  - common_voice_17_0
library_name: transformers
license: cc-by-nc-4.0
metrics:
  - wer
  - bleu
tags:
  - generated_from_trainer
model-index:
  - name: wav2vec2-mms-1b-CV17.0-training_set_variations
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: ta
          split: validation
          args: ta
        metrics:
          - type: wer
            value: 0.4582664894348444
            name: Wer
          - type: bleu
            value: 0.3001349308741465
            name: Bleu

wav2vec2-mms-1b-CV17.0-training_set_variations

This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4355
  • Wer: 0.4583
  • Cer: 0.0787
  • Bleu: 0.3001

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.15
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer Bleu
12.8763 25.0 50 4.9690 1.0000 0.9319 0.0
2.2038 50.0 100 0.3040 0.4239 0.0696 0.3337
0.1153 75.0 150 0.2911 0.4134 0.0685 0.3474
0.0557 100.0 200 0.3344 0.4333 0.0718 0.3271
0.0448 125.0 250 0.3486 0.4403 0.0743 0.3213
0.0382 150.0 300 0.3938 0.4499 0.0762 0.3102
0.0364 175.0 350 0.3927 0.4525 0.0778 0.3045
0.0286 200.0 400 0.3883 0.4417 0.0744 0.3173
0.0293 225.0 450 0.4235 0.4656 0.0794 0.2913
0.0296 250.0 500 0.4432 0.4710 0.0817 0.2771
0.0302 275.0 550 0.4266 0.4524 0.0765 0.3016
0.0252 300.0 600 0.4376 0.4717 0.0815 0.2793
0.0216 325.0 650 0.4355 0.4583 0.0787 0.3001

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1