metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
- bleu
model-index:
- name: wav2vec2-mms-1b-CV17.0-training_set_variations
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: ta
split: validation
args: ta
metrics:
- name: Wer
type: wer
value: 1.0759957831049183
- name: Bleu
type: bleu
value: 0
wav2vec2-mms-1b-CV17.0-training_set_variations
This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:
- Loss: 6.3100
- Wer: 1.0760
- Cer: 0.7242
- Bleu: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.15
- training_steps: 2000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Bleu |
---|---|---|---|---|---|---|
13.5071 | 6.25 | 50 | 7.0048 | 1.0001 | 0.9823 | 0.0 |
5.6893 | 12.5 | 100 | 5.2167 | 1.0000 | 0.9089 | 0.0 |
4.3569 | 18.75 | 150 | 4.3516 | 1.0125 | 0.8661 | 0.0 |
3.5211 | 25.0 | 200 | 3.5506 | 1.0269 | 0.8318 | 0.0 |
3.2359 | 31.25 | 250 | 3.4822 | 1.0039 | 0.8458 | 0.0 |
3.1004 | 37.5 | 300 | 3.5209 | 1.0086 | 0.8185 | 0.0 |
2.9953 | 43.75 | 350 | 3.5498 | 1.0121 | 0.8104 | 0.0 |
2.779 | 50.0 | 400 | 3.6218 | 1.0170 | 0.7777 | 0.0 |
2.6019 | 56.25 | 450 | 4.0907 | 1.0134 | 0.7504 | 0.0 |
2.4589 | 62.5 | 500 | 3.8633 | 1.0287 | 0.7476 | 0.0 |
2.2318 | 68.75 | 550 | 3.7976 | 1.0367 | 0.7239 | 0.0 |
2.0073 | 75.0 | 600 | 4.0050 | 1.0234 | 0.7288 | 0.0 |
1.7416 | 81.25 | 650 | 4.2022 | 1.0126 | 0.7231 | 0.0 |
1.5467 | 87.5 | 700 | 4.4087 | 1.0469 | 0.7197 | 0.0 |
1.3716 | 93.75 | 750 | 4.5391 | 1.0471 | 0.7185 | 0.0 |
1.2237 | 100.0 | 800 | 4.8405 | 1.0398 | 0.7152 | 0.0 |
1.1216 | 106.25 | 850 | 5.0209 | 1.0421 | 0.7160 | 0.0 |
1.0274 | 112.5 | 900 | 5.0349 | 1.0669 | 0.7160 | 0.0 |
0.9325 | 118.75 | 950 | 5.2384 | 1.0500 | 0.7198 | 0.0 |
0.8486 | 125.0 | 1000 | 5.3843 | 1.0614 | 0.7131 | 0.0 |
0.7996 | 131.25 | 1050 | 5.4558 | 1.0622 | 0.7181 | 0.0 |
0.7479 | 137.5 | 1100 | 5.6746 | 1.0622 | 0.7205 | 0.0 |
0.6972 | 143.75 | 1150 | 5.7069 | 1.1182 | 0.7218 | 0.0 |
0.6596 | 150.0 | 1200 | 5.7678 | 1.0883 | 0.7221 | 0.0 |
0.6213 | 156.25 | 1250 | 5.9645 | 1.0700 | 0.7191 | 0.0 |
0.5905 | 162.5 | 1300 | 6.0098 | 1.0970 | 0.7210 | 0.0 |
0.5532 | 168.75 | 1350 | 6.0379 | 1.0981 | 0.7235 | 0.0 |
0.5336 | 175.0 | 1400 | 6.2079 | 1.0564 | 0.7210 | 0.0 |
0.4955 | 181.25 | 1450 | 6.1618 | 1.0717 | 0.7225 | 0.0 |
0.4851 | 187.5 | 1500 | 6.3100 | 1.0760 | 0.7242 | 0.0 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1