ndeclarke's picture
End of training
419bae0 verified
|
raw
history blame
4.28 kB
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
  - bleu
model-index:
  - name: wav2vec2-mms-1b-CV17.0-training_set_variations
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: ta
          split: validation
          args: ta
        metrics:
          - name: Wer
            type: wer
            value: 1.0759957831049183
          - name: Bleu
            type: bleu
            value: 0

wav2vec2-mms-1b-CV17.0-training_set_variations

This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 6.3100
  • Wer: 1.0760
  • Cer: 0.7242
  • Bleu: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.15
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer Bleu
13.5071 6.25 50 7.0048 1.0001 0.9823 0.0
5.6893 12.5 100 5.2167 1.0000 0.9089 0.0
4.3569 18.75 150 4.3516 1.0125 0.8661 0.0
3.5211 25.0 200 3.5506 1.0269 0.8318 0.0
3.2359 31.25 250 3.4822 1.0039 0.8458 0.0
3.1004 37.5 300 3.5209 1.0086 0.8185 0.0
2.9953 43.75 350 3.5498 1.0121 0.8104 0.0
2.779 50.0 400 3.6218 1.0170 0.7777 0.0
2.6019 56.25 450 4.0907 1.0134 0.7504 0.0
2.4589 62.5 500 3.8633 1.0287 0.7476 0.0
2.2318 68.75 550 3.7976 1.0367 0.7239 0.0
2.0073 75.0 600 4.0050 1.0234 0.7288 0.0
1.7416 81.25 650 4.2022 1.0126 0.7231 0.0
1.5467 87.5 700 4.4087 1.0469 0.7197 0.0
1.3716 93.75 750 4.5391 1.0471 0.7185 0.0
1.2237 100.0 800 4.8405 1.0398 0.7152 0.0
1.1216 106.25 850 5.0209 1.0421 0.7160 0.0
1.0274 112.5 900 5.0349 1.0669 0.7160 0.0
0.9325 118.75 950 5.2384 1.0500 0.7198 0.0
0.8486 125.0 1000 5.3843 1.0614 0.7131 0.0
0.7996 131.25 1050 5.4558 1.0622 0.7181 0.0
0.7479 137.5 1100 5.6746 1.0622 0.7205 0.0
0.6972 143.75 1150 5.7069 1.1182 0.7218 0.0
0.6596 150.0 1200 5.7678 1.0883 0.7221 0.0
0.6213 156.25 1250 5.9645 1.0700 0.7191 0.0
0.5905 162.5 1300 6.0098 1.0970 0.7210 0.0
0.5532 168.75 1350 6.0379 1.0981 0.7235 0.0
0.5336 175.0 1400 6.2079 1.0564 0.7210 0.0
0.4955 181.25 1450 6.1618 1.0717 0.7225 0.0
0.4851 187.5 1500 6.3100 1.0760 0.7242 0.0

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1