metadata
base_model: facebook/mms-1b-all
datasets:
- common_voice_17_0
library_name: transformers
license: cc-by-nc-4.0
metrics:
- wer
- bleu
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-mms-1b-CV17.0-training_set_variations
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: ta
split: validation
args: ta
metrics:
- type: wer
value: 0.3597180870859695
name: Wer
- type: bleu
value: 0.4226157099926465
name: Bleu
wav2vec2-mms-1b-CV17.0-training_set_variations
This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2047
- Wer: 0.3597
- Cer: 0.0579
- Bleu: 0.4226
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.15
- training_steps: 2000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Bleu |
---|---|---|---|---|---|---|
6.3615 | 0.3906 | 100 | 0.2954 | 0.4162 | 0.0682 | 0.3508 |
0.2115 | 0.7812 | 200 | 0.2266 | 0.3822 | 0.0619 | 0.3888 |
0.1868 | 1.1719 | 300 | 0.2227 | 0.3755 | 0.0608 | 0.3981 |
0.1913 | 1.5625 | 400 | 0.2274 | 0.3912 | 0.0637 | 0.3779 |
0.1896 | 1.9531 | 500 | 0.2263 | 0.3858 | 0.0631 | 0.3867 |
0.1769 | 2.3438 | 600 | 0.2176 | 0.3785 | 0.0618 | 0.3942 |
0.1752 | 2.7344 | 700 | 0.2162 | 0.3816 | 0.0614 | 0.3887 |
0.1777 | 3.125 | 800 | 0.2098 | 0.3606 | 0.0582 | 0.4260 |
0.1747 | 3.5156 | 900 | 0.2078 | 0.3657 | 0.0585 | 0.4111 |
0.1672 | 3.9062 | 1000 | 0.2075 | 0.3770 | 0.0595 | 0.3920 |
0.1583 | 4.2969 | 1100 | 0.2060 | 0.3631 | 0.0580 | 0.4137 |
0.1713 | 4.6875 | 1200 | 0.2064 | 0.3664 | 0.0587 | 0.4118 |
0.1563 | 5.0781 | 1300 | 0.2047 | 0.3597 | 0.0579 | 0.4226 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1