ndeclarke's picture
Upload tokenizer
4e5edfa verified
|
raw
history blame
3.02 kB
metadata
base_model: facebook/mms-1b-all
datasets:
  - common_voice_17_0
library_name: transformers
license: cc-by-nc-4.0
metrics:
  - wer
  - bleu
tags:
  - generated_from_trainer
model-index:
  - name: wav2vec2-mms-1b-CV17.0-training_set_variations
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: ta
          split: validation
          args: ta
        metrics:
          - type: wer
            value: 0.3597180870859695
            name: Wer
          - type: bleu
            value: 0.4226157099926465
            name: Bleu

wav2vec2-mms-1b-CV17.0-training_set_variations

This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2047
  • Wer: 0.3597
  • Cer: 0.0579
  • Bleu: 0.4226

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.15
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer Bleu
6.3615 0.3906 100 0.2954 0.4162 0.0682 0.3508
0.2115 0.7812 200 0.2266 0.3822 0.0619 0.3888
0.1868 1.1719 300 0.2227 0.3755 0.0608 0.3981
0.1913 1.5625 400 0.2274 0.3912 0.0637 0.3779
0.1896 1.9531 500 0.2263 0.3858 0.0631 0.3867
0.1769 2.3438 600 0.2176 0.3785 0.0618 0.3942
0.1752 2.7344 700 0.2162 0.3816 0.0614 0.3887
0.1777 3.125 800 0.2098 0.3606 0.0582 0.4260
0.1747 3.5156 900 0.2078 0.3657 0.0585 0.4111
0.1672 3.9062 1000 0.2075 0.3770 0.0595 0.3920
0.1583 4.2969 1100 0.2060 0.3631 0.0580 0.4137
0.1713 4.6875 1200 0.2064 0.3664 0.0587 0.4118
0.1563 5.0781 1300 0.2047 0.3597 0.0579 0.4226

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1