ndeclarke's picture
Upload tokenizer
a5e0e38 verified
|
raw
history blame
3 kB
metadata
base_model: facebook/mms-1b-all
datasets:
  - common_voice_17_0
library_name: transformers
license: cc-by-nc-4.0
metrics:
  - wer
  - bleu
tags:
  - generated_from_trainer
model-index:
  - name: wav2vec2-mms-1b-CV17.0-training_set_variations
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: ta
          split: validation
          args: ta
        metrics:
          - type: wer
            value: 0.45588302699729566
            name: Wer
          - type: bleu
            value: 0.30120570288375
            name: Bleu

wav2vec2-mms-1b-CV17.0-training_set_variations

This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4242
  • Wer: 0.4559
  • Cer: 0.0764
  • Bleu: 0.3012

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.15
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer Bleu
13.1596 12.5 50 6.8694 1.0 0.9625 0.0
3.2131 25.0 100 0.4085 0.4707 0.0784 0.2830
0.1719 37.5 150 0.2583 0.3920 0.0650 0.3818
0.0962 50.0 200 0.2869 0.4118 0.0682 0.3547
0.0648 62.5 250 0.3209 0.4213 0.0696 0.3435
0.0613 75.0 300 0.3404 0.4454 0.0742 0.3200
0.0515 87.5 350 0.3744 0.4385 0.0734 0.3289
0.0426 100.0 400 0.3835 0.4479 0.0748 0.3078
0.0384 112.5 450 0.3776 0.4432 0.0746 0.3243
0.0363 125.0 500 0.4053 0.4371 0.0732 0.3251
0.0385 137.5 550 0.4225 0.4520 0.0772 0.3115
0.0343 150.0 600 0.4295 0.4463 0.0758 0.3167
0.0371 162.5 650 0.4242 0.4559 0.0764 0.3012

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1