ndeclarke's picture
Upload tokenizer
f7fd995 verified
|
raw
history blame
2.61 kB
metadata
base_model: facebook/mms-1b-all
datasets:
  - common_voice_17_0
library_name: transformers
license: cc-by-nc-4.0
metrics:
  - wer
  - bleu
tags:
  - generated_from_trainer
model-index:
  - name: wav2vec2-mms-1b-CV17.0-training_set_variations
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: ta
          split: validation
          args: ta
        metrics:
          - type: wer
            value: 0.4250355227574827
            name: Wer
          - type: bleu
            value: 0.3461897882903843
            name: Bleu

wav2vec2-mms-1b-CV17.0-training_set_variations

This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3320
  • Wer: 0.4250
  • Cer: 0.0720
  • Bleu: 0.3462

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.15
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer Bleu
11.5156 6.25 50 5.5076 1.0 0.9701 0.0
1.8133 12.5 100 0.2759 0.4067 0.0674 0.3610
0.1751 18.75 150 0.2414 0.3828 0.0639 0.3924
0.1315 25.0 200 0.2556 0.3887 0.0649 0.3901
0.1 31.25 250 0.2842 0.4168 0.0700 0.3520
0.0842 37.5 300 0.2997 0.4133 0.0699 0.3571
0.0717 43.75 350 0.3210 0.4260 0.0732 0.3431
0.0608 50.0 400 0.3320 0.4250 0.0720 0.3462

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1