ndeclarke's picture
Upload tokenizer
29eebe1 verified
|
raw
history blame
3.02 kB
metadata
base_model: facebook/mms-1b-all
datasets:
  - common_voice_17_0
library_name: transformers
license: cc-by-nc-4.0
metrics:
  - wer
  - bleu
tags:
  - generated_from_trainer
model-index:
  - name: wav2vec2-mms-1b-CV17.0-training_set_variations
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: ta
          split: validation
          args: ta
        metrics:
          - type: wer
            value: 0.41655589677774213
            name: Wer
          - type: bleu
            value: 0.3602695476100989
            name: Bleu

wav2vec2-mms-1b-CV17.0-training_set_variations

This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3166
  • Wer: 0.4166
  • Cer: 0.0689
  • Bleu: 0.3603

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.15
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer Bleu
11.8671 3.125 50 3.8104 1.0011 0.9249 0.0
1.5965 6.25 100 0.2796 0.4122 0.0680 0.3517
0.2054 9.375 150 0.2320 0.3751 0.0620 0.4040
0.1702 12.5 200 0.2367 0.3794 0.0633 0.3939
0.1495 15.625 250 0.2527 0.4168 0.0680 0.3457
0.1457 18.75 300 0.2536 0.3973 0.0662 0.3723
0.1264 21.875 350 0.2765 0.4175 0.0693 0.3546
0.1092 25.0 400 0.2711 0.4032 0.0673 0.3701
0.0952 28.125 450 0.2828 0.4139 0.0691 0.3605
0.0919 31.25 500 0.2972 0.4283 0.0721 0.3355
0.0909 34.375 550 0.2971 0.4155 0.0686 0.3567
0.0744 37.5 600 0.3086 0.4241 0.0705 0.3461
0.069 40.625 650 0.3166 0.4166 0.0689 0.3603

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1