metadata
base_model: facebook/mms-1b-all
datasets:
- common_voice_17_0
library_name: transformers
license: cc-by-nc-4.0
metrics:
- wer
- bleu
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-mms-1b-CV17.0-training_set_variations
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: ta
split: validation
args: ta
metrics:
- type: wer
value: 0.4315686639374767
name: Wer
- type: bleu
value: 0.32915498289612805
name: Bleu
wav2vec2-mms-1b-CV17.0-training_set_variations
This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3977
- Wer: 0.4316
- Cer: 0.0713
- Bleu: 0.3292
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.15
- training_steps: 2000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Bleu |
---|---|---|---|---|---|---|
9.4608 | 25.0 | 100 | 1.1497 | 0.8643 | 0.1955 | 0.0179 |
0.1833 | 50.0 | 200 | 0.2812 | 0.4107 | 0.0676 | 0.3604 |
0.062 | 75.0 | 300 | 0.3407 | 0.4378 | 0.0717 | 0.3203 |
0.048 | 100.0 | 400 | 0.3852 | 0.4328 | 0.0723 | 0.3317 |
0.0398 | 125.0 | 500 | 0.4127 | 0.4462 | 0.0753 | 0.3148 |
0.0335 | 150.0 | 600 | 0.3984 | 0.4420 | 0.0729 | 0.3145 |
0.0312 | 175.0 | 700 | 0.3977 | 0.4316 | 0.0713 | 0.3292 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1