ndeclarke's picture
Upload tokenizer
9ec1381 verified
|
raw
history blame
2.52 kB
metadata
base_model: facebook/mms-1b-all
datasets:
  - common_voice_17_0
library_name: transformers
license: cc-by-nc-4.0
metrics:
  - wer
  - bleu
tags:
  - generated_from_trainer
model-index:
  - name: wav2vec2-mms-1b-CV17.0-training_set_variations
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: ta
          split: >-
            validation[:5%]+validation[20%:25%]+validation[60%:65%]+validation[90%:]
          args: ta
        metrics:
          - type: wer
            value: 0.5119016249451032
            name: Wer
          - type: bleu
            value: 0.24178033350654143
            name: Bleu

wav2vec2-mms-1b-CV17.0-training_set_variations

This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4958
  • Wer: 0.5119
  • Cer: 0.0973
  • Bleu: 0.2418

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.15
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer Bleu
6.9079 100.0 100 0.3463 0.4393 0.0786 0.3177
0.0658 200.0 200 0.3912 0.4538 0.0839 0.3158
0.0346 300.0 300 0.4707 0.5046 0.0947 0.2477
0.0265 400.0 400 0.4906 0.5137 0.0967 0.2393
0.0184 500.0 500 0.5407 0.5240 0.1005 0.2301
0.0158 600.0 600 0.4958 0.5119 0.0973 0.2418

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1