metadata
base_model: facebook/mms-1b-all
datasets:
- common_voice_17_0
library_name: transformers
license: cc-by-nc-4.0
metrics:
- wer
- bleu
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-mms-1b-CV17.0-training_set_variations
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: ta
split: >-
validation[:5%]+validation[20%:25%]+validation[60%:65%]+validation[90%:]
args: ta
metrics:
- type: wer
value: 0.5119016249451032
name: Wer
- type: bleu
value: 0.24178033350654143
name: Bleu
wav2vec2-mms-1b-CV17.0-training_set_variations
This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4958
- Wer: 0.5119
- Cer: 0.0973
- Bleu: 0.2418
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.15
- training_steps: 2000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Bleu |
---|---|---|---|---|---|---|
6.9079 | 100.0 | 100 | 0.3463 | 0.4393 | 0.0786 | 0.3177 |
0.0658 | 200.0 | 200 | 0.3912 | 0.4538 | 0.0839 | 0.3158 |
0.0346 | 300.0 | 300 | 0.4707 | 0.5046 | 0.0947 | 0.2477 |
0.0265 | 400.0 | 400 | 0.4906 | 0.5137 | 0.0967 | 0.2393 |
0.0184 | 500.0 | 500 | 0.5407 | 0.5240 | 0.1005 | 0.2301 |
0.0158 | 600.0 | 600 | 0.4958 | 0.5119 | 0.0973 | 0.2418 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1