|
--- |
|
license: cc-by-nc-sa-4.0 |
|
base_model: microsoft/layoutlmv3-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cord-layoutlmv3 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-cord_100 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: cord-layoutlmv3 |
|
type: cord-layoutlmv3 |
|
config: cord |
|
split: test |
|
args: cord |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9296817172464841 |
|
- name: Recall |
|
type: recall |
|
value: 0.9401197604790419 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9348716040193524 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9435483870967742 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-cord_100 |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2908 |
|
- Precision: 0.9297 |
|
- Recall: 0.9401 |
|
- F1: 0.9349 |
|
- Accuracy: 0.9435 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 5 |
|
- eval_batch_size: 5 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 2500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 4.17 | 250 | 1.0995 | 0.6869 | 0.7635 | 0.7231 | 0.7789 | |
|
| 1.4568 | 8.33 | 500 | 0.5676 | 0.8382 | 0.8765 | 0.8569 | 0.8773 | |
|
| 1.4568 | 12.5 | 750 | 0.4044 | 0.8920 | 0.9147 | 0.9032 | 0.9202 | |
|
| 0.3562 | 16.67 | 1000 | 0.3518 | 0.9086 | 0.9229 | 0.9157 | 0.9270 | |
|
| 0.3562 | 20.83 | 1250 | 0.3060 | 0.9245 | 0.9349 | 0.9297 | 0.9372 | |
|
| 0.1509 | 25.0 | 1500 | 0.3032 | 0.9261 | 0.9379 | 0.9319 | 0.9419 | |
|
| 0.1509 | 29.17 | 1750 | 0.2980 | 0.9261 | 0.9386 | 0.9323 | 0.9368 | |
|
| 0.0848 | 33.33 | 2000 | 0.2996 | 0.9226 | 0.9371 | 0.9298 | 0.9385 | |
|
| 0.0848 | 37.5 | 2250 | 0.2924 | 0.9276 | 0.9394 | 0.9334 | 0.9440 | |
|
| 0.0619 | 41.67 | 2500 | 0.2908 | 0.9297 | 0.9401 | 0.9349 | 0.9435 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|