neuralhaven's picture
Model save
1b2fb9b verified
metadata
license: apache-2.0
base_model: neuralhaven/KDRSSC_ViT2TinyViT
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: KDRSSC_ViT2TinyViT-RESISC45_FT
    results: []

KDRSSC_ViT2TinyViT-RESISC45_FT

This model is a fine-tuned version of neuralhaven/KDRSSC_ViT2TinyViT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2192
  • Accuracy: 0.9403
  • Precision: 0.9412
  • Recall: 0.9410
  • F1: 0.9406

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 512
  • eval_batch_size: 512
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
3.1125 1.0 37 0.9645 0.911 0.9167 0.9076 0.9069
0.6036 2.0 74 0.2854 0.938 0.9387 0.9394 0.9370
0.4344 3.0 111 0.2315 0.942 0.9412 0.9422 0.9395
0.3572 4.0 148 0.1993 0.948 0.9480 0.9487 0.9464
0.3086 5.0 185 0.2025 0.94 0.9405 0.9391 0.9372
0.2906 6.0 222 0.1979 0.939 0.9394 0.9381 0.9358
0.2567 7.0 259 0.1814 0.943 0.9427 0.9440 0.9413
0.2785 8.0 296 0.1563 0.948 0.9470 0.9484 0.9464
0.2462 9.0 333 0.1509 0.951 0.9508 0.9524 0.9501
0.245 10.0 370 0.1489 0.949 0.9475 0.9492 0.9468

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1