|
--- |
|
license: apache-2.0 |
|
base_model: mistralai/Mistral-7B-Instruct-v0.3 |
|
|
|
model-index: |
|
- name: Mistral-7B-Instruct-v0.3-GPTQ-4bit |
|
results: |
|
|
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
name: normalized accuracy |
|
value: 63.40 |
|
|
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
name: normalized accuracy |
|
value: 84.04 |
|
|
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 57.48 |
|
|
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
name: accuracy |
|
value: 45.41 |
|
|
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
name: accuracy |
|
value: 61.07 |
|
|
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
name: accuracy |
|
value: 79.08 |
|
|
|
--- |
|
|
|
# Model Card for Mistral-7B-Instruct-v0.3 quantized to 4bit weights |
|
|
|
- Weight-only quantization of [Mistral-7B-Instruct-v0.3](mistralai/Mistral-7B-Instruct-v0.3) via GPTQ to 4bits with group_size=128 |
|
- GPTQ optimized for 99.75% accuracy recovery relative to the unquantized model |
|
|
|
# Open LLM Leaderboard evaluation scores |
|
| | Mistral-7B-Instruct-v0.3 | Mistral-7B-Instruct-v0.3-GPTQ-4bit<br>(this model) | |
|
| :------------------: | :----------------------: | :------------------------------------------------: | |
|
| arc-c<br>25-shot | 63.48 | 63.40 | |
|
| mmlu<br>5-shot | 61.13 | 60.89 | |
|
| hellaswag<br>10-shot | 84.49 | 84.04 | |
|
| winogrande<br>5-shot | 79.16 | 79.08 | |
|
| gsm8k<br>5-shot | 43.37 | 45.41 | |
|
| truthfulqa<br>0-shot | 59.65 | 57.48 | |
|
| **Average<br>Accuracy** | **65.21** | **65.05** | |
|
| **Recovery** | **100%** | **99.75%** | |
|
|
|
# vLLM Inference Performance |
|
|
|
This model is ready for optimized inference using the Marlin mixed-precision kernels in vLLM: https://github.com/vllm-project/vllm |
|
|
|
Simply start this model as an inference server with: |
|
```bash |
|
python -m vllm.entrypoints.openai.api_server --model neuralmagic/Mistral-7B-Instruct-v0.3-GPTQ-4bit |
|
``` |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/60466e4b4f40b01b66151416/SC_tYXjoS3yIoOYtfqZ2E.png) |
|
|
|
|