metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- ontonotes5
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner-ontonotes
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: ontonotes5
type: ontonotes5
config: ontonotes5
split: train
args: ontonotes5
metrics:
- name: Precision
type: precision
value: 0.8567258883248731
- name: Recall
type: recall
value: 0.8841595180407308
- name: F1
type: f1
value: 0.8702265476459025
- name: Accuracy
type: accuracy
value: 0.9754933764288157
bert-finetuned-ner-ontonotes
This model is a fine-tuned version of bert-base-cased on the ontonotes5 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1503
- Precision: 0.8567
- Recall: 0.8842
- F1: 0.8702
- Accuracy: 0.9755
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0842 | 1.0 | 7491 | 0.0950 | 0.8524 | 0.8715 | 0.8618 | 0.9745 |
0.0523 | 2.0 | 14982 | 0.1044 | 0.8449 | 0.8827 | 0.8634 | 0.9744 |
0.036 | 3.0 | 22473 | 0.1118 | 0.8529 | 0.8843 | 0.8683 | 0.9760 |
0.0231 | 4.0 | 29964 | 0.1240 | 0.8589 | 0.8805 | 0.8696 | 0.9752 |
0.0118 | 5.0 | 37455 | 0.1416 | 0.8570 | 0.8804 | 0.8685 | 0.9753 |
0.0077 | 6.0 | 44946 | 0.1503 | 0.8567 | 0.8842 | 0.8702 | 0.9755 |
Framework versions
- Transformers 4.22.1
- Pytorch 1.12.1+cu113
- Datasets 2.5.1
- Tokenizers 0.12.1