nickprock's picture
update model card README.md
a84bb04
|
raw
history blame
2.5 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - ontonotes5
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-finetuned-ner-ontonotes
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: ontonotes5
          type: ontonotes5
          config: ontonotes5
          split: train
          args: ontonotes5
        metrics:
          - name: Precision
            type: precision
            value: 0.8567258883248731
          - name: Recall
            type: recall
            value: 0.8841595180407308
          - name: F1
            type: f1
            value: 0.8702265476459025
          - name: Accuracy
            type: accuracy
            value: 0.9754933764288157

bert-finetuned-ner-ontonotes

This model is a fine-tuned version of bert-base-cased on the ontonotes5 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1503
  • Precision: 0.8567
  • Recall: 0.8842
  • F1: 0.8702
  • Accuracy: 0.9755

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0842 1.0 7491 0.0950 0.8524 0.8715 0.8618 0.9745
0.0523 2.0 14982 0.1044 0.8449 0.8827 0.8634 0.9744
0.036 3.0 22473 0.1118 0.8529 0.8843 0.8683 0.9760
0.0231 4.0 29964 0.1240 0.8589 0.8805 0.8696 0.9752
0.0118 5.0 37455 0.1416 0.8570 0.8804 0.8685 0.9753
0.0077 6.0 44946 0.1503 0.8567 0.8842 0.8702 0.9755

Framework versions

  • Transformers 4.22.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.5.1
  • Tokenizers 0.12.1