whisper-medium-4-F / README.md
nicolarsen's picture
End of training
7c4b940 verified
metadata
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - common_voice_16_1
metrics:
  - wer
model-index:
  - name: Whisper da-nst
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_16_1
          type: common_voice_16_1
          config: da
          split: test
          args: da
        metrics:
          - name: Wer
            type: wer
            value: 29.18882072256305

Whisper da-nst

This model is a fine-tuned version of openai/whisper-medium on the common_voice_16_1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9322
  • Wer: 29.1888

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0044 4.02 1000 0.9078 32.9698
0.0039 9.01 2000 0.8743 31.2338
0.0014 13.02 3000 0.8763 30.7476
0.0 18.01 4000 0.8731 30.0250
0.0 23.0 5000 0.8994 29.5024
0.0 27.02 6000 0.9165 29.3615
0.0 32.01 7000 0.9277 29.2297
0.0 36.03 8000 0.9322 29.1888

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1