Text_Summarization / README.md
nikhilwani's picture
End of training
7102a7f
|
raw
history blame
2.11 kB
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
datasets:
- billsum
metrics:
- rouge
model-index:
- name: Text_Summarization
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: billsum
type: billsum
config: default
split: ca_test
args: default
metrics:
- name: Rouge1
type: rouge
value: 0.1447
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Text_Summarization
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5015
- Rouge1: 0.1447
- Rouge2: 0.0522
- Rougel: 0.1204
- Rougelsum: 0.1202
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 62 | 2.7888 | 0.1267 | 0.0351 | 0.1053 | 0.1051 | 19.0 |
| No log | 2.0 | 124 | 2.5770 | 0.1336 | 0.0452 | 0.1108 | 0.1107 | 19.0 |
| No log | 3.0 | 186 | 2.5178 | 0.1439 | 0.0513 | 0.1188 | 0.1185 | 19.0 |
| No log | 4.0 | 248 | 2.5015 | 0.1447 | 0.0522 | 0.1204 | 0.1202 | 19.0 |
### Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3