nikitakapitan's picture
Update README.md
3e5f7b6
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - clinc_oos
metrics:
  - accuracy
model-index:
  - name: bert-base-uncased-finetuned-clinc_oos-distilled-clinc_oos
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: clinc_oos
          type: clinc_oos
          config: plus
          split: validation
          args: plus
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9158064516129032

bert-base-uncased-finetuned-clinc_oos-distilled-clinc_oos

This model is a fine-tuned version of distilbert-base-uncased on the clinc_oos dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7724
  • Accuracy: 0.9158

Model Training Details

Parameter Value
Task text-classification
Teacher Model bert-base-uncased-finetuned-clinc_oos
Student Model distilbert-base-uncased
Dataset Name clinc_oos
Dataset Config plus
Evaluation Dataset validation
Batch Size 48
Number of Epochs 5
Learning Rate 0.00002
Alpha* 1
*alpha: (Total_loss = alpha * Loss_CE + (1-alpha) * Loss_KD)

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 48
  • eval_batch_size: 48
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 318 3.2762 0.7284
3.7824 2.0 636 1.8624 0.8358
3.7824 3.0 954 1.1512 0.8984
1.6858 4.0 1272 0.8540 0.9132
0.8983 5.0 1590 0.7724 0.9158

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3