File size: 2,147 Bytes
6652a37
 
 
 
 
 
 
 
 
e966ae4
6652a37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e966ae4
 
 
 
 
6652a37
 
 
 
 
 
 
 
 
e966ae4
 
 
6652a37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e966ae4
 
 
 
 
6652a37
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: bert-base-uncased-finetuned-emotion
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: emotion
      type: emotion
      config: split
      split: validation
      args: split
    metrics:
    - name: Accuracy
      type: accuracy
      value:
        accuracy: 0.9355
    - name: F1
      type: f1
      value:
        f1: 0.935388774713548
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-uncased-finetuned-emotion

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1651
- Accuracy: {'accuracy': 0.9355}
- F1: {'f1': 0.935388774713548}

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy             | F1                         |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|:--------------------------:|
| 0.2519        | 1.0   | 1000 | 0.1878          | {'accuracy': 0.9325} | {'f1': 0.9323540471733189} |
| 0.1434        | 2.0   | 2000 | 0.1799          | {'accuracy': 0.9335} | {'f1': 0.9341179573678701} |
| 0.0907        | 3.0   | 3000 | 0.1651          | {'accuracy': 0.9355} | {'f1': 0.935388774713548}  |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3