MultiModal MultiLingual (3ML)
This model is 4bit quantized of glm-4v-9b Model (Less than 9G).
It excels in document, image, chart questioning answering and delivers superior performance over GPT-4-turbo-2024-04-09, Gemini 1.0 Pro, Qwen-VL-Max, and Claude 3 Opus.
Some part of the original Model changed and It can excute on free version of google colab.
Try it:
Note: For optimal performance with document and image understanding, please use English or Chinese. The model can still handle chat in any supported language.
About GLM-4V-9B
GLM-4V-9B is a multimodal language model with visual understanding capabilities. The evaluation results of its related classic tasks are as follows:
MMBench-EN-Test | MMBench-CN-Test | SEEDBench_IMG | MMStar | MMMU | MME | HallusionBench | AI2D | OCRBench | |
---|---|---|---|---|---|---|---|---|---|
英文综合 | 中文综合 | 综合能力 | 综合能力 | 学科综合 | 感知推理 | 幻觉性 | 图表理解 | 文字识别 | |
GPT-4o, 20240513 | 83.4 | 82.1 | 77.1 | 63.9 | 69.2 | 2310.3 | 55 | 84.6 | 736 |
GPT-4v, 20240409 | 81 | 80.2 | 73 | 56 | 61.7 | 2070.2 | 43.9 | 78.6 | 656 |
GPT-4v, 20231106 | 77 | 74.4 | 72.3 | 49.7 | 53.8 | 1771.5 | 46.5 | 75.9 | 516 |
InternVL-Chat-V1.5 | 82.3 | 80.7 | 75.2 | 57.1 | 46.8 | 2189.6 | 47.4 | 80.6 | 720 |
LlaVA-Next-Yi-34B | 81.1 | 79 | 75.7 | 51.6 | 48.8 | 2050.2 | 34.8 | 78.9 | 574 |
Step-1V | 80.7 | 79.9 | 70.3 | 50 | 49.9 | 2206.4 | 48.4 | 79.2 | 625 |
MiniCPM-Llama3-V2.5 | 77.6 | 73.8 | 72.3 | 51.8 | 45.8 | 2024.6 | 42.4 | 78.4 | 725 |
Qwen-VL-Max | 77.6 | 75.7 | 72.7 | 49.5 | 52 | 2281.7 | 41.2 | 75.7 | 684 |
GeminiProVision | 73.6 | 74.3 | 70.7 | 38.6 | 49 | 2148.9 | 45.7 | 72.9 | 680 |
Claude-3V Opus | 63.3 | 59.2 | 64 | 45.7 | 54.9 | 1586.8 | 37.8 | 70.6 | 694 |
GLM-4v-9B | 81.1 | 79.4 | 76.8 | 58.7 | 47.2 | 2163.8 | 46.6 | 81.1 | 786 |
This repository is the model repository of 4bit quantized of GLM-4V-9B model, supporting 8K context length. |
Quick Start
Use colab model or this python script.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
device = "cuda"
modelPath="nikravan/glm-4vq"
tokenizer = AutoTokenizer.from_pretrained(modelPath, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
modelPath,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
device_map="auto"
)
query ='explain all the details in this picture'
image = Image.open("a3.png").convert('RGB')
#image=""
inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": query}],
add_generation_prompt=True, tokenize=True, return_tensors="pt",
return_dict=True) # chat with image mode
inputs = inputs.to(device)
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
print(tokenizer.decode(outputs[0]))
- Downloads last month
- 1,602
Inference API (serverless) does not yet support model repos that contain custom code.