Swallow-70b-RP / README.md
nitky's picture
Upload 23 files
1e744ea verified
---
base_model:
- tokyotech-llm/Swallow-70b-instruct-hf
- nitky/Swallow-70b-NVE-RP
tags:
- mergekit
- merge
language:
- en
- ja
library_name: transformers
pipeline_tag: text-generation
license: llama2
model_type: llama
---
# Swallow-70b-RP
**Important Notice:**
For personal and academic use only.
## Description
This model is suitable for role-playing and storytelling, but it's not a great model for multi-turn chat.
This was created for personal and academic use only. This merge model uses only fine-tune models of Llama2, but some of the models used include those whose licenses for commercial use are unclear.
If there is a license problem, the rights holder should contact me directly. No license changes will be made due to contact from others.
## Test environment
This model was tested using [text-generation-webui](https://github.com/oobabooga/text-generation-webui/tree/main). I use preset `simple-1` and `Null preset` for Generation.
### Recommendation
Use `simple-1` settings:
- temperature: 0.7
- top_p: 0.9
- repetition_penalty: 1.15
- top_k: 20
### Tested `temperature` Range
- temperature: 0.3 - 1.0
### Tested `repetition_penalty` Range
- repetition_penalty: 1.0 - 1.15
## Prompt template
### Swallow Style (Alpaca format)
```
以下に、あるタスクを説明する指示があり、それに付随する入力が更なる文脈を提供しています。リクエストを適切に完了するための回答を記述してください。
### 指示:
{instruction}
### 応答:
```
Although not fully tested, [Doctor-Shotgun/lzlv-limarpv3-l2-70b](Doctor-Shotgun/lzlv-limarpv3-l2-70b) and [alac/Waxwing-Storytelling-70B-LoRA](https://huggingface.co/alac/Waxwing-Storytelling-70B-LoRA) prompt styles are also available.
## Use the instruct model
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "nitky/Swallow-70b-RP"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto", load_in_4bit = True)
PROMPT_DICT = {
"prompt_input": (
"以下に、あるタスクを説明する指示があり、それに付随する入力が更なる文脈を提供しています。"
"リクエストを適切に完了するための回答を記述してください。\n\n"
"### 指示:\n{instruction}\n\n### 入力:\n{input}\n\n### 応答:"
),
"prompt_no_input": (
"以下に、あるタスクを説明する指示があります。"
"リクエストを適切に完了するための回答を記述してください。\n\n"
"### 指示:\n{instruction}\n\n### 応答:"
),
}
def create_prompt(instruction, input=None):
"""
Generates a prompt based on the given instruction and an optional input.
If input is provided, it uses the 'prompt_input' template from PROMPT_DICT.
If no input is provided, it uses the 'prompt_no_input' template.
Args:
instruction (str): The instruction describing the task.
input (str, optional): Additional input providing context for the task. Default is None.
Returns:
str: The generated prompt.
"""
if input:
# Use the 'prompt_input' template when additional input is provided
return PROMPT_DICT["prompt_input"].format(instruction=instruction, input=input)
else:
# Use the 'prompt_no_input' template when no additional input is provided
return PROMPT_DICT["prompt_no_input"].format(instruction=instruction)
# Example usage
instruction_example = "以下のトピックに関する詳細な情報を提供してください。"
input_example = "東京工業大学の主なキャンパスについて教えてください"
prompt = create_prompt(instruction_example, input_example)
input_ids = tokenizer.encode(
prompt,
add_special_tokens=False,
return_tensors="pt"
)
tokens = model.generate(
input_ids.to(device=model.device),
max_new_tokens=200,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.15,
top_k=20,
do_sample=True,
)
out = tokenizer.decode(tokens[0], skip_special_tokens=True)
print(out)
```
## Merge Details
### Merge Method
This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) and the SLERP merge method using [tokyotech-llm/Swallow-70b-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-hf) as a base.
### Models Merged
The following models were included in the merge:
* [GOAT-AI/GOAT-70B-Storytelling](https://huggingface.co/GOAT-AI/GOAT-70B-Storytelling)
* [dreamgen/opus-v0.5-70b](https://huggingface.co/dreamgen/opus-v0.5-70b)
* [Doctor-Shotgun/lzlv-limarpv3-l2-70b](Doctor-Shotgun/lzlv-limarpv3-l2-70b)
* [LoRA] [alac/Waxwing-Storytelling-70B-LoRA](https://huggingface.co/alac/Waxwing-Storytelling-70B-LoRA)
### Configuration
The command example:
```bash
# please change the path and options according to your environment
mergekit-mega --cuda Swallow-70b-RP.yml ~/text-generation-webui/models
```
The following YAML configuration was used to produce this model:
```yaml
models:
- model: tokyotech-llm/Swallow-70b-instruct-hf
# no parameters necessary for base model
- model: nitky/Swallow-70b-NVE-RP
parameters:
density: 1
weight:
- filter: mlp
value: 0.1
- filter: self_attn
value: 0.4
- value: 0 # fallback for rest of tensors.
merge_method: dare_ties
base_model: tokyotech-llm/Swallow-70b-instruct-hf
dtype: bfloat16
tokenizer_source: union
name: Swallow-70b-RP-base
---
models:
- model: tokyotech-llm/Swallow-70b-instruct-hf
# no parameters necessary for base model
- model: nitky/Swallow-70b-NVE-RP
parameters:
density: 1
weight:
- filter: mlp
value: [0.4, 0.1, 0.4, 0.1, 0.4, 0.1, 0.4, 0.1, 0.1]
- filter: self_attn
value: [0.4, 0.4, 0.1, 0.4, 0.1, 0.4, 0.1, 0.4, 0.4]
- value: 0 # fallback for rest of tensors.
merge_method: dare_ties
base_model: tokyotech-llm/Swallow-70b-instruct-hf
dtype: bfloat16
tokenizer_source: union
name: Swallow-70b-RP-flavor
---
slices:
- sources:
- model: Swallow-70b-RP-base
layer_range: [0, 80]
- model: Swallow-70b-RP-flavor
layer_range: [0, 80]
merge_method: slerp
base_model: Swallow-70b-RP-base
parameters:
t: # model stabilization
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5 # fallback for rest of tensors
dtype: bfloat16
name: Swallow-70b-RP
```