Edit model card

gpt_trinity_2_4_3e-5_lp5_nb5

This model is a fine-tuned version of skt/kogpt2-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 4.0291

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 4.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
3.5765 0.05 1000 4.1247
3.19 0.09 2000 4.0578
3.1177 0.14 3000 4.0708
3.1116 0.19 4000 4.0654
3.0777 0.24 5000 4.0857
3.1105 0.28 6000 4.1127
3.1018 0.33 7000 4.1410
3.0728 0.38 8000 4.1834
3.1248 0.42 9000 4.2058
3.1035 0.47 10000 4.2048
3.0943 0.52 11000 4.1892
3.0724 0.57 12000 4.2063
3.0517 0.61 13000 4.1923
3.0372 0.66 14000 4.2112
3.0235 0.71 15000 4.2043
3.0329 0.76 16000 4.1630
3.0171 0.8 17000 4.1631
2.9997 0.85 18000 4.1563
2.9913 0.9 19000 4.1616
2.9579 0.94 20000 4.1494
2.9576 0.99 21000 4.1367
2.7461 1.04 22000 4.1593
2.7637 1.09 23000 4.1453
2.741 1.13 24000 4.1624
2.7514 1.18 25000 4.1357
2.755 1.23 26000 4.1524
2.7365 1.27 27000 4.1399
2.7356 1.32 28000 4.1285
2.7386 1.37 29000 4.1286
2.7489 1.42 30000 4.1231
2.7518 1.46 31000 4.1104
2.7317 1.51 32000 4.1202
2.7378 1.56 33000 4.1132
2.7309 1.6 34000 4.1047
2.7791 1.65 35000 4.0976
2.7427 1.7 36000 4.0874
2.7184 1.75 37000 4.0953
2.7107 1.79 38000 4.0963
2.7122 1.84 39000 4.0841
2.7172 1.89 40000 4.0852
2.7126 1.94 41000 4.0632
2.7063 1.98 42000 4.0643
2.5311 2.03 43000 4.0848
2.4496 2.08 44000 4.0943
2.4597 2.12 45000 4.0799
2.4472 2.17 46000 4.0802
2.4628 2.22 47000 4.0880
2.4508 2.27 48000 4.0791
2.4743 2.31 49000 4.0765
2.4692 2.36 50000 4.0739
2.4651 2.41 51000 4.0690
2.4885 2.45 52000 4.0723
2.5023 2.5 53000 4.0675
2.4651 2.55 54000 4.0649
2.4774 2.6 55000 4.0695
2.4717 2.64 56000 4.0559
2.4856 2.69 57000 4.0512
2.4572 2.74 58000 4.0473
2.486 2.79 59000 4.0438
2.449 2.83 60000 4.0385
2.456 2.88 61000 4.0355
2.4802 2.93 62000 4.0378
2.4635 2.97 63000 4.0308
2.3742 3.02 64000 4.0488
2.2371 3.07 65000 4.0579
2.2496 3.12 66000 4.0630
2.2758 3.16 67000 4.0516
2.2489 3.21 68000 4.0585
2.2374 3.26 69000 4.0715
2.2862 3.3 70000 4.0507
2.2502 3.35 71000 4.0512
2.238 3.4 72000 4.0545
2.2407 3.45 73000 4.0459
2.2529 3.49 74000 4.0452
2.2453 3.54 75000 4.0459
2.2314 3.59 76000 4.0416
2.2408 3.63 77000 4.0379
2.2497 3.68 78000 4.0348
2.2475 3.73 79000 4.0374
2.2376 3.78 80000 4.0319
2.244 3.82 81000 4.0331
2.2611 3.87 82000 4.0306
2.237 3.92 83000 4.0301
2.2337 3.97 84000 4.0291

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.9.0+cu102
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.