|
``` |
|
lm_eval --model vllm --model_args pretrained=/home/mgoin/code/llm-compressor/examples/quantizing_moe/OLMoE-1B-7B-0924-Instruct-FP8,tensor_parallel_size=1,trust_remote_code=True --tasks gsm8k --num_fewshot 5 --batch_size auto |
|
vllm (pretrained=/home/mgoin/code/llm-compressor/examples/quantizing_moe/OLMoE-1B-7B-0924-Instruct-FP8,tensor_parallel_size=1,trust_remote_code=True), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: auto |
|
|Tasks|Version| Filter |n-shot| Metric | |Value | |Stderr| |
|
|-----|------:|----------------|-----:|-----------|---|-----:|---|-----:| |
|
|gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.3510|± |0.0131| |
|
| | |strict-match | 5|exact_match|↑ |0.3389|± |0.0130| |
|
``` |
|
|
|
## Creation |
|
```python |
|
import torch |
|
from datasets import load_dataset |
|
from transformers import AutoTokenizer |
|
|
|
from llmcompressor.modifiers.quantization import QuantizationModifier |
|
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot |
|
|
|
# select a Mixture of Experts model for quantization |
|
MODEL_ID = "allenai/OLMoE-1B-7B-0924-Instruct" |
|
|
|
model = SparseAutoModelForCausalLM.from_pretrained( |
|
MODEL_ID, device_map="auto", torch_dtype="auto", trust_remote_code=True |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) |
|
|
|
# Select calibration dataset. |
|
# its recommended to use more calibration samples for MoE models so each expert is hit |
|
DATASET_ID = "HuggingFaceH4/ultrachat_200k" |
|
DATASET_SPLIT = "train_sft" |
|
NUM_CALIBRATION_SAMPLES = 2048 |
|
MAX_SEQUENCE_LENGTH = 2048 |
|
|
|
|
|
# Load dataset and preprocess. |
|
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) |
|
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) |
|
|
|
|
|
def preprocess(example): |
|
return { |
|
"text": tokenizer.apply_chat_template( |
|
example["messages"], |
|
tokenize=False, |
|
) |
|
} |
|
|
|
|
|
ds = ds.map(preprocess) |
|
|
|
|
|
# Tokenize inputs. |
|
def tokenize(sample): |
|
return tokenizer( |
|
sample["text"], |
|
padding=False, |
|
max_length=MAX_SEQUENCE_LENGTH, |
|
truncation=True, |
|
add_special_tokens=False, |
|
) |
|
|
|
|
|
ds = ds.map(tokenize, remove_columns=ds.column_names) |
|
|
|
# define a llmcompressor recipe for FP8 W8A8 quantization |
|
# since the MoE gate layers are sensitive to quantization, we add them to the ignore |
|
# list so they remain at full precision |
|
recipe = [ |
|
QuantizationModifier( |
|
targets="Linear", |
|
scheme="FP8", |
|
ignore=["lm_head", "re:.*mlp.gate$"], |
|
), |
|
] |
|
|
|
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8" |
|
|
|
oneshot( |
|
model=model, |
|
dataset=ds, |
|
recipe=recipe, |
|
max_seq_length=MAX_SEQUENCE_LENGTH, |
|
num_calibration_samples=NUM_CALIBRATION_SAMPLES, |
|
save_compressed=True, |
|
output_dir=SAVE_DIR, |
|
) |
|
|
|
|
|
print("========== SAMPLE GENERATION ==============") |
|
SAMPLE_INPUT = ["I love quantization because"] |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) |
|
inputs = tokenizer(SAMPLE_INPUT, return_tensors="pt", padding=True).to(model.device) |
|
output = model.generate(**inputs, max_length=50) |
|
text_output = tokenizer.batch_decode(output) |
|
print(text_output) |
|
``` |